Last active
October 21, 2015 21:53
-
-
Save dennyglee/c933b5ae01c57bd01d94 to your computer and use it in GitHub Desktop.
Spark 1.4 PermGenSize Error (ssimeonov)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Spark Shell Executed */ | |
./bin/spark-shell --master spark://servername:7077 --driver-class-path $CLASSPATH | |
/* Output */ | |
Welcome to | |
____ __ | |
/ __/__ ___ _____/ /__ | |
_\ \/ _ \/ _ `/ __/ '_/ | |
/___/ .__/\_,_/_/ /_/\_\ version 1.4.0 | |
/_/ | |
Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_79) | |
Type in expressions to have them evaluated. | |
Type :help for more information. | |
Spark context available as sc. | |
15/07/06 18:39:40 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies) | |
15/07/06 18:39:40 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies) | |
15/07/06 18:39:42 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 0.13.1aa | |
SQL context available as sqlContext. | |
scala> val df = sqlContext.jsonFile("/data/ssimeonov/gz/apache-spark-failure-data-part-00000.gz") | |
df: org.apache.spark.sql.DataFrame = [aac_brand: string, aag__id: bigint, aag_weight: bigint, aca_brand: string, aca_conversion_integration: boolean, aca_daily_budget: bigint, aca_hide_brand_from_publishers: boolean, aca_is_remnant: boolean, aca_short_name: string, accid: string, acr__id: bigint, acr_choices: array<struct<cta:string,headline:string,img:string,target:string>>, acr_cta: string, acr_description1: string, acr_description2: string, acr_destination: string, acr_displayUrl: string, acr_headline: string, acr_img: string, acr_isiUrl: string, acr_paramCTA: string, acr_paramName: string, acr_paramPlaceholder: string, acr_target: string, acr_type: string, acr_weight: bigint, agid: string, akw__id: bigint, akw_canonical_id: bigint, akw_criterion_type: string, akw_destination_url: st... | |
scala> df.registerTempTable("training") | |
scala> sqlContext.sql("select count(*) as cnt from training").collect().take(10).foreach(println) | |
[88175] | |
scala> import org.apache.spark.sql.hive.HiveContext | |
import org.apache.spark.sql.hive.HiveContext | |
scala> val ctx = new HiveContext(sc) | |
ctx: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@21165c0e | |
scala> import ctx.implicits._ | |
import ctx.implicits._ | |
scala> val df = ctx.jsonFile("/data/ssimeonov/gz/apache-spark-failure-data-part-00000.gz") | |
java.lang.OutOfMemoryError: PermGen space | |
Stopping spark context. | |
Exception in thread "main" | |
Exception: java.lang.OutOfMemoryError thrown from the UncaughtExceptionHandler in thread "main" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Spark Shell Executed */ | |
./bin/spark-shell --master spark://servername:7077 --driver-class-path $CLASSPATH --conf "spark.driver.extraJavaOptions=-XX:MaxPermSize=256m" | |
/* Output */ | |
Welcome to | |
____ __ | |
/ __/__ ___ _____/ /__ | |
_\ \/ _ \/ _ `/ __/ '_/ | |
/___/ .__/\_,_/_/ /_/\_\ version 1.4.0 | |
/_/ | |
Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_79) | |
Type in expressions to have them evaluated. | |
Type :help for more information. | |
Spark context available as sc. | |
SQL context available as sqlContext. | |
scala> val df = sqlContext.jsonFile("/data/ssimeonov/gz/apache-spark-failure-data-part-00000.gz") | |
df: org.apache.spark.sql.DataFrame = [aac_brand: string, aag__id: bigint, aag_weight: bigint, aca_brand: string, aca_conversion_integration: boolean, aca_daily_budget: bigint, aca_hide_brand_from_publishers: boolean, aca_is_remnant: boolean, aca_short_name: string, accid: string, acr__id: bigint, acr_choices: array<struct<cta:string,headline:string,img:string,target:string>>, acr_cta: string, acr_description1: string, acr_description2: string, acr_destination: string, acr_displayUrl: string, acr_headline: string, acr_img: string, acr_isiUrl: string, acr_paramCTA: string, acr_paramName: string, acr_paramPlaceholder: string, acr_target: string, acr_type: string, acr_weight: bigint, agid: string, akw__id: bigint, akw_canonical_id: bigint, akw_criterion_type: string, akw_destination_url: st... | |
scala> sqlContext.sql("select count(*) as cnt from training").collect().take(10).foreach(println) | |
[88175] | |
scala> import org.apache.spark.sql.hive.HiveContext | |
import org.apache.spark.sql.hive.HiveContext | |
scala> val ctx = new HiveContext(sc) | |
ctx: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@1f5588c1 | |
scala> import ctx.implicits._ | |
import ctx.implicits._ | |
scala> val df = ctx.jsonFile("/data/ssimeonov/gz/apache-spark-failure-data-part-00000.gz") | |
df: org.apache.spark.sql.DataFrame = [aac_brand: string, aag__id: bigint, aag_weight: bigint, aca_brand: string, aca_conversion_integration: boolean, aca_daily_budget: bigint, aca_hide_brand_from_publishers: boolean, aca_is_remnant: boolean, aca_short_name: string, accid: string, acr__id: bigint, acr_choices: array<struct<cta:string,headline:string,img:string,target:string>>, acr_cta: string, acr_description1: string, acr_description2: string, acr_destination: string, acr_displayUrl: string, acr_headline: string, acr_img: string, acr_isiUrl: string, acr_paramCTA: string, acr_paramName: string, acr_paramPlaceholder: string, acr_target: string, acr_type: string, acr_weight: bigint, agid: string, akw__id: bigint, akw_canonical_id: bigint, akw_criterion_type: string, akw_destination_url: st... | |
scala> df.registerTempTable("training") | |
scala> val dfCount = ctx.sql("select count(*) as cnt from training") | |
dfCount: org.apache.spark.sql.DataFrame = [cnt: bigint] | |
scala> println(dfCount.first.getLong(0)) | |
88175 | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Spark Shell Executed */ | |
./bin/spark-shell --master spark://servername:7077 --driver-class-path $CLASSPATH | |
/* Output */ | |
Welcome to | |
____ __ | |
/ __/__ ___ _____/ /__ | |
_\ \/ _ \/ _ `/ __/ '_/ | |
/___/ .__/\_,_/_/ /_/\_\ version 1.4.0 | |
/_/ | |
Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_45) | |
Type in expressions to have them evaluated. | |
Type :help for more information. | |
Spark context available as sc. | |
SQL context available as sqlContext. | |
scala> val df = sqlContext.jsonFile("/data/ssimeonov/gz/apache-spark-failure-data-part-00000.gz") | |
df: org.apache.spark.sql.DataFrame = [aac_brand: string, aag__id: bigint, aag_weight: bigint, aca_brand: string, aca_conversion_integration: boolean, aca_daily_budget: bigint, aca_hide_brand_from_publishers: boolean, aca_is_remnant: boolean, aca_short_name: string, accid: string, acr__id: bigint, acr_choices: array<struct<cta:string,headline:string,img:string,target:string>>, acr_cta: string, acr_description1: string, acr_description2: string, acr_destination: string, acr_displayUrl: string, acr_headline: string, acr_img: string, acr_isiUrl: string, acr_paramCTA: string, acr_paramName: string, acr_paramPlaceholder: string, acr_target: string, acr_type: string, acr_weight: bigint, agid: string, akw__id: bigint, akw_canonical_id: bigint, akw_criterion_type: string, akw_destination_url: st... | |
scala> df.registerTempTable("training") | |
scala> sqlContext.sql("select count(*) as cnt from training").collect().take(10).foreach(println) | |
[88175] | |
scala> import org.apache.spark.sql.hive.HiveContext | |
import org.apache.spark.sql.hive.HiveContext | |
scala> val ctx = new HiveContext(sc) | |
ctx: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@38c408c7 | |
scala> import ctx.implicits._ | |
scala> val df = ctx.jsonFile("/data/ssimeonov/gz/apache-spark-failure-data-part-00000.gz") | |
scala> df.registerTempTable("training") | |
df: org.apache.spark.sql.DataFrame = [aac_brand: string, aag__id: bigint, aag_weight: bigint, aca_brand: string, aca_conversion_integration: boolean, aca_daily_budget: bigint, aca_hide_brand_from_publishers: boolean, aca_is_remnant: boolean, aca_short_name: string, accid: string, acr__id: bigint, acr_choices: array<struct<cta:string,headline:string,img:string,target:string>>, acr_cta: string, acr_description1: string, acr_description2: string, acr_destination: string, acr_displayUrl: string, acr_headline: string, acr_img: string, acr_isiUrl: string, acr_paramCTA: string, acr_paramName: string, acr_paramPlaceholder: string, acr_target: string, acr_type: string, acr_weight: bigint, agid: string, akw__id: bigint, akw_canonical_id: bigint, akw_criterion_type: string, akw_destination_url: st... | |
scala> | |
scala> val dfCount = ctx.sql("select count(*) as cnt from training") | |
dfCount: org.apache.spark.sql.DataFrame = [cnt: bigint] | |
scala> println(dfCount.first.getLong(0)) | |
88175 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment