Created
December 14, 2023 19:26
-
-
Save densumesh/91d603841849389020b8b1cee89cd74c to your computer and use it in GitHub Desktop.
Rust Splade Embeddings generation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
pub fn get_splade_vector( | |
input: String, | |
model: Model, | |
tokenizer: &Tokenizer, | |
) -> Result<Vec<f32>, ServiceError> { | |
let tokenized_inputs = tokenizer.encode(input, false).unwrap(); | |
let tokens = tokenized_inputs.get_ids().to_vec(); | |
let token_ids = Tensor::new(tokens.as_slice(), &candle_core::Device::Cpu) | |
.map_err(|e| ServiceError::BadRequest(format!("Could not create tensor: {}", e)))?; | |
let token_ids = token_ids.unsqueeze(0).unwrap(); | |
let token_type_ids = token_ids | |
.zeros_like() | |
.map_err(|e| ServiceError::BadRequest(format!("Could not create tensor: {}", e)))?; | |
let attention_mask = token_type_ids | |
.ne(0_i64) | |
.map_err(|e| ServiceError::BadRequest(format!("Could not run ne: {}", e)))?; | |
log::info!("token_ids: {:?}", token_ids); | |
log::info!("token_type_ids: {:?}", token_type_ids); | |
let embeddings = match model { | |
Model::Doc(model) => model | |
.forward(&token_ids, &attention_mask) | |
.map_err(|e| ServiceError::BadRequest(format!("Could not run model: {}", e)))?, | |
Model::Query(model) => model | |
.forward(&token_ids, &token_type_ids) | |
.map_err(|e| ServiceError::BadRequest(format!("Could not run model: {}", e)))?, | |
}; | |
let logits = embeddings.to_dtype(candle_core::DType::F32).unwrap(); | |
let relu = logits.relu().map_err(|e| { | |
ServiceError::BadRequest(format!("Could not run relu on logits: {}", e)) | |
})?; | |
let relu_log = relu | |
.add( | |
&Tensor::ones( | |
relu.shape(), | |
candle_core::DType::F32, | |
&candle_core::Device::Cpu, | |
) | |
.unwrap(), | |
) | |
.unwrap() | |
.log() | |
.map_err(|e| ServiceError::BadRequest(format!("Could not run log on logits: {}", e)))?; | |
let weighted_log = relu_log | |
.broadcast_mul( | |
&attention_mask | |
.unsqueeze(D::Minus1) | |
.unwrap() | |
.to_dtype(candle_core::DType::F32) | |
.unwrap(), | |
) | |
.map_err(|e| ServiceError::BadRequest(format!("Could not run mul: {}", e)))?; | |
let max_val = weighted_log | |
.max(1) | |
.map_err(|e| ServiceError::BadRequest(format!("Could not run max: {}", e)))?; | |
log::info!("max_val: {:?}", max_val); | |
max_val | |
.squeeze(0) | |
.unwrap() | |
.to_vec1::<f32>() | |
.map_err(|e| ServiceError::BadRequest(format!("Could not run to_vec1: {}", e))) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment