Skip to content

Instantly share code, notes, and snippets.

@denti
Forked from erikbern/install-tensorflow.sh
Last active December 8, 2017 17:49
Show Gist options
  • Save denti/41860cb6b55e0847b4f2685016c7f14e to your computer and use it in GitHub Desktop.
Save denti/41860cb6b55e0847b4f2685016c7f14e to your computer and use it in GitHub Desktop.
Install TensorFlow v 0.11 and later on EC2 instances with Ubuntu 16.04. Instances: p2.xlarge, g2.xlarge and bigger
# Note – this is not a bash script (some of the steps require reboot)
# I named it .sh just so Github does correct syntax highlighting.
#
# This is also available as an AMI in us-east-1 (virginia): ami-cf5028a5
#
# The CUDA part is mostly based on this excellent blog post:
# http://tleyden.github.io/blog/2014/10/25/cuda-6-dot-5-on-aws-gpu-instance-running-ubuntu-14-dot-04/
# Install various packages
sudo apt-get update
sudo apt-get upgrade -y # choose “install package maintainers version”
sudo apt-get install -y build-essential python-pip python-dev git python-numpy swig python-dev default-jdk zip zlib1g-dev
# Blacklist Noveau which has some kind of conflict with the nvidia driver
echo -e "blacklist nouveau\nblacklist lbm-nouveau\noptions nouveau modeset=0\nalias nouveau off\nalias lbm-nouveau off\n" | sudo tee /etc/modprobe.d/blacklist-nouveau.conf
echo options nouveau modeset=0 | sudo tee -a /etc/modprobe.d/nouveau-kms.conf
sudo update-initramfs -u
# Some other annoying thing we have to do
sudo apt-get install -y linux-image-extra-virtual
# REBOOT!
sudo reboot
# Install latest Linux headers
sudo apt-get install -y linux-source linux-headers-`uname -r`
# Install CUDA 8.0
mkdir install
cd ./install
wget https://developer.nvidia.com/compute/cuda/8.0/prod/local_installers/cuda_8.0.44_linux-run
chmod +x cuda_8.0.44_linux-run
./cuda_8.0.44_linux-run -extract=`pwd`/nvidia_installers
cd nvidia_installers
sudo ./NVIDIA-Linux-x86_64-367.48.run
sudo modprobe nvidia
sudo ./cuda-linux64-rel-8.0.44-21122537.run
cd
# Install CUDNN 8.0
# YOU NEED TO SCP THIS ONE FROM SOMEWHERE ELSE – it's not available online.
# You need to register and get approved to get a download link. Very annoying.
tar xvzf cudnn-8.0-linux-x64-v5.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
# At this point the root mount is getting a bit full
# I had a lot of issues where the disk would fill up and then Bazel would end up in this weird state complaining about random things
# Make sure you don't run out of disk space when building Tensorflow!
sudo mkdir /mnt/tmp
sudo chmod 777 /mnt/tmp
sudo rm -rf /tmp
sudo ln -s /mnt/tmp /tmp
# Note that /mnt is not saved when building an AMI, so don't put anything crucial on it
# Install Bazel
# Latest installation manual is here:
# https://bazel.build/versions/master/docs/install.html
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list
curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add -
sudo apt-get update && sudo apt-get install bazel
sudo apt-get upgrade bazel
# Install TensorFlow
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64"
export CUDA_HOME=/usr/local/cuda-8.0
git clone --recurse-submodules https://github.com/tensorflow/tensorflow
cd tensorflow
# IMPORTANT! set compability with 3.0 in the next configure step if you are using g2.xlarge.
# If you using p2.xlarge, just use empty string
# Please note that each additional compute capability significantly increases your build time and binary size.
# [Default is: "3.5,5.2"]: 3.0
TF_UNOFFICIAL_SETTING=1 ./configure
# Build Python package
# Note: you have to specify --config=cuda here - this is not mentioned in the official docs
# https://github.com/tensorflow/tensorflow/issues/25#issuecomment-156173717
# To build with GPU support:
bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
sudo pip install /tmp/tensorflow_pkg/tensorflow-0.11.0rc2-py2-none-any.whl
# Test it!
cd tensorflow/models/image/cifar10/
python cifar10_multi_gpu_train.py
# On a g2.2xlarge: step 100, loss = 4.50 (325.2 examples/sec; 0.394 sec/batch)
# On a g2.8xlarge: step 100, loss = 4.49 (337.9 examples/sec; 0.379 sec/batch)
# doesn't seem like it is able to use the 4 GPU cards unfortunately :(
# To run tf in ipython after session relaunch yiu have to export some variables
LD_LIBRARY_PATH=/usr/local/cuda/extras/CUPTI/lib64
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64"
export CUDA_HOME=/usr/local/cuda-8.0
@denti
Copy link
Author

denti commented Nov 28, 2016

If you are using 16.10 and CUDA 8.0 you have to dongrade gcc version and use gcc v.5.
But by default Ubuntu 16.10 uses v.6

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-5 g++-5

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 60 --slave /usr/bin/g++ g++ /usr/bin/g++-5

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment