-
-
Save derekbassett/c4cb100b8ec8555682d67b2338f2c669 to your computer and use it in GitHub Desktop.
Go: Newton's method for square root
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
A Tour of Go: page 44 | |
http://tour.golang.org/#44 | |
Exercise: Loops and Functions | |
As a simple way to play with functions and loops, implement the square root function using Newton's method. | |
In this case, Newton's method is to approximate Sqrt(x) by picking a starting point z and then repeating: z - (z*z - x) / (2 * z) | |
To begin with, just repeat that calculation 10 times and see how close you get to the answer for various values (1, 2, 3, ...). | |
Next, change the loop condition to stop once the value has stopped changing (or only changes by a very small delta). See if that's more or fewer iterations. How close are you to the math.Sqrt? | |
Hint: to declare and initialize a floating point value, give it floating point syntax or use a conversion: | |
z := float64(1) | |
z := 1.0 | |
*/ | |
package main | |
import ( | |
"fmt" | |
"math" | |
) | |
const DELTA = 0.0000001 | |
const INITIAL_Z = 100.0 | |
func Sqrt(x float64) (z float64) { | |
z = INITIAL_Z | |
step := func() float64 { | |
return z - (z*z - x) / (2 * z) | |
} | |
for zz := step(); math.Abs(zz - z) > DELTA | |
{ | |
z = zz | |
zz = step() | |
} | |
return | |
} | |
func main() { | |
fmt.Println(Sqrt(500)) | |
fmt.Println(math.Sqrt(500)) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment