Last active
February 28, 2023 12:44
-
-
Save dermesser/739253b288a2ef19d382b1215e450d39 to your computer and use it in GitHub Desktop.
Standard algorithm for longest increasing subsequence in Julia.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function longest_increasing_subsequence(v::Vector{Int})::Vector{Int} | |
M = zeros(Int, length(v)) # M[L] stores last index of sequence with length L. | |
P = zeros(Int, length(v)) # P[i] stores predecessor of element i in longest sequence. | |
Longest = 0 | |
for i = eachindex(v) | |
# Binary search for position in longest-sequence-so-far | |
lo, hi = 1, Longest+1 | |
while lo < hi | |
mid = round(Int, floor((lo+hi)/2)) | |
if v[i] < v[M[mid]] | |
hi = mid | |
else | |
lo = mid+1 | |
end | |
end | |
@assert lo == hi | |
# Update predecessor of current index. | |
P[i] = lo > 1 ? M[lo-1] : -1 | |
M[lo] = i | |
if lo >= Longest | |
Longest = lo | |
end | |
end | |
# Reconstruct sequence. | |
seq = zeros(Int, Longest) | |
i = M[Longest] | |
for j = Longest:-1:1 | |
seq[j] = v[i] | |
i = P[i] | |
end | |
seq | |
end | |
# Alternative, table-free implementation - uses same memory | |
function recursive_liss(v::AbstractVector{<:Integer}) | |
N = length(v) | |
prev, L = zeros(Int, N), zeros(Int, N) | |
Lmax = recursive_liss(v, 1, 1, 0, prev, L) | |
# Reconstruct: | |
i = L[Lmax] | |
l = Lmax | |
liss = zeros(Int, Lmax) | |
while i > 0 | |
liss[l] = v[i] | |
i = prev[i] | |
l -= 1 | |
end | |
liss | |
end | |
function recursive_liss(v::AbstractVector{<:Integer}, last=1, i=1, l=0, prev=zeros(Int, length(v)), L=zeros(Int, length(v)), Lmax=[0])::Int | |
if i > length(v) | |
return l | |
else | |
if v[i] >= v[last] | |
incl = recursive_liss(v, i, i+1, l+1, prev, L, Lmax) | |
excl = recursive_liss(v, last, i+1, l, prev, L, Lmax) | |
if incl >= excl | |
Lmax[1] = max(Lmax[1], incl) | |
end | |
if incl == Lmax[1] | |
L[l+1] = i | |
prev[i] = last | |
end | |
max(incl, excl) | |
else # v[i] < v[last] | |
incl = recursive_liss(v, i, i+1, 1, prev, L, Lmax) | |
excl = recursive_liss(v, last, i+1, l, prev, L, Lmax) | |
max(incl, excl) | |
end | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment