Created
February 26, 2022 12:50
-
-
Save dermesser/f001b444a53d514061a16dbaaf8e9036 to your computer and use it in GitHub Desktop.
MNIST autoencoder network with ~251k weights in Flux.jl, running on CPU and GPU.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using MKL | |
using CUDA | |
import Flux | |
import MLDatasets | |
import Images | |
import BSON: @load,@save | |
import NNlib | |
using Dates | |
function logn(args...) | |
println(now(), " ", args...) | |
end | |
DIMS = (28, 28) | |
function build_model() | |
encoder = Flux.Chain( | |
Flux.Conv((4,4), 1 => 16, Flux.relu, stride=2, pad=Flux.SamePad()), | |
Flux.Conv((4,4), 16 => 16, Flux.relu, stride=2, pad=Flux.SamePad()), | |
Flux.Conv((4,4), 16 => 16, Flux.relu, stride=1, pad=Flux.SamePad()), | |
Flux.Conv((4,4), 16 => 1, Flux.relu, stride=1, pad=0), | |
Flux.flatten, | |
Flux.Dense(16, 4, Flux.sigmoid)) | |
decoder = Flux.Chain( | |
Flux.Dense(4, 36, Flux.relu), | |
x -> reshape(x, 6, 6, 1, size(x, 2)), | |
Flux.ConvTranspose((3,3), 1 => 32, Flux.relu), | |
Flux.ConvTranspose((3,3), 32 => 32, Flux.relu), | |
#Flux.ConvTranspose((3,3), 64 => 64, Flux.relu), | |
Flux.Conv((3,3), 32 => 16, Flux.relu), | |
Flux.Conv((3,3), 16 => 8, Flux.relu), | |
Flux.flatten, | |
Flux.Dense(288, 784, Flux.sigmoid), | |
#Flux.Dense(784, 784, Flux.sigmoid), | |
x -> reshape(x, 28, 28, 1, size(x, 2))) | |
Flux.Chain(encoder, decoder) |> Flux.gpu | |
end | |
function save_model(m) | |
m = Flux.cpu(m) | |
encoder = m[1] | |
decoder = m[2] | |
@save "model.bson" encoder decoder | |
end | |
function load_model() | |
if stat("model.bson").nlink > 0 | |
logn("Loading model from file...") | |
@load "model.bson" encoder decoder | |
return Flux.Chain(encoder, decoder) |> Flux.gpu | |
end | |
logn("No model.bson found: creating new model") | |
return build_model() | |
end | |
function make_loss(model)::Function | |
return (data) -> Flux.Losses.mse(model(data), data) | |
end | |
function train(model, data, loss, epochs=100) | |
params = Flux.params(model) | |
cb() = logn("Current loss: $(loss(data))") | |
dl = Flux.DataLoader(data, batchsize=32, shuffle=true, partial=true) | |
for i in 1:epochs | |
logn("Epoch $i") | |
Flux.train!(loss, params, dl, Flux.ADAM(1e-4), cb=Flux.throttle(cb, 60)) | |
save_model(model) | |
end | |
end | |
function main() | |
m = load_model() |> Flux.gpu | |
l = make_loss(m) | |
data, _ = MLDatasets.MNIST.testdata() | |
logn(size(data)) | |
data = Flux.gpu(convert.(Float32, Flux.unsqueeze(data, 3))) | |
train(m, data, l) | |
end | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment