Skip to content

Instantly share code, notes, and snippets.

@derrickturk
Created January 8, 2014 16:52
Show Gist options
  • Save derrickturk/8320041 to your computer and use it in GitHub Desktop.
Save derrickturk/8320041 to your computer and use it in GitHub Desktop.
A simple generic simulated annealing solver, and basic implementations of the "standard" acceptance probability function and exponential-decay temperature schedules.
from random import Random
import math
def anneal(initial, energyfn, candidatefn, acceptancefn, temperaturefn, tmax):
rand = Random()
t = 0
solution = initial
s_best = initial
e_best = energyfn(initial)
while (t <= tmax):
temp = temperaturefn(float(t) / tmax)
candidate = candidatefn(solution)
e_cur = energyfn(solution)
e_cand = energyfn(candidatefn)
p_accept = acceptancefn(e_cur, e_cand, temp)
if rand.random() <= p_accept:
solution = candidate
if e_cand < e_best:
s_best = candidate
e_best = e_cand
t += 1
return s_best
def standard_accept(e_cur, e_cand, temp):
if e_cand <= e_cur:
return 1
if temp <= 0:
return 0
return math.exp(-(e_cand - e_cur)/temp)
def exp_decay(initial, decay_const=5, zero_threshold=0.95):
def f(t_frac):
if t_frac >= zero_threshold:
return 0.0
return initial * math.exp(-decay_const * t_frac)
return f
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment