-
-
Save describeme/246a117aa18f321b7082550b83272d64 to your computer and use it in GitHub Desktop.
Ahead of time scheduling on ECS/EC2: full_metric_lambda.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import boto3 | |
import datetime | |
import logging | |
import json | |
import re | |
logger = logging.getLogger() | |
logger.setLevel(logging.INFO) | |
logger.info('Loading function...') | |
ecs = boto3.client('ecs') | |
autoscaling = boto3.client('autoscaling') | |
cw = boto3.client('cloudwatch') | |
def handler(event, context): | |
asgs = get_aot_autoscaling_groups() | |
logger.debug(json.dumps(asgs, default=str)) | |
logger.info('found %s AOT schedulable autoscaling groups...', len(asgs)) | |
metric_data = [] | |
for asg in asgs: | |
logger.info('Processing ASG %s', asg['AutoScalingGroupName']) | |
cluster_name = next(x for x in asg['Tags'] if x['Key'] == 'cluster_name')['Value'] | |
logger.info('Calculating schedulable containers for cluster %s', cluster_name) | |
instance_list = ecs.list_container_instances(cluster=cluster_name, status='ACTIVE') | |
if len(instance_list['containerInstanceArns']) == 0: | |
logger.info('Cluster has no container instances, skipping...') | |
continue | |
instances = ecs.describe_container_instances(cluster=cluster_name, | |
containerInstances=instance_list['containerInstanceArns']) | |
tasks = get_tasks(cluster_name) | |
if len(tasks) == 0: | |
logger.info('Received no tasks... skipping cluster') | |
continue | |
logger.debug(json.dumps(tasks, default=str)) | |
max_cpu = get_max_cpu(tasks) | |
max_memory = int(max(tasks, key=lambda x: x['memory'])['memory']) | |
logger.info('Max cpu: %s', max_cpu) | |
logger.info('Max memory: %s', max_memory) | |
schedulable_containers = 0 | |
for instance in instances['containerInstances']: | |
remaining_resources = {resource['name']: resource for resource in instance['remainingResources']} | |
containers_by_cpu = int(remaining_resources['CPU']['integerValue'] / max_cpu) | |
containers_by_mem = int(remaining_resources['MEMORY']['integerValue'] / max_memory) | |
logger.info('Remaining resources on %s. CPU: %s, Memory: %s', | |
instance['ec2InstanceId'], | |
remaining_resources['CPU']['integerValue'], | |
remaining_resources['MEMORY']['integerValue']) | |
schedulable_containers += min(containers_by_cpu, containers_by_mem) | |
logger.info('%s containers could be scheduled on %s based on CPU only', | |
containers_by_cpu, instance['ec2InstanceId']) | |
logger.info('%s containers could be scheduled on %s based on memory only', | |
containers_by_mem, instance['ec2InstanceId']) | |
logger.info('Schedulable containers: %s', schedulable_containers) | |
metric_data.append({ | |
'MetricName': 'SchedulableContainers', | |
'Dimensions': [{ | |
'Name': 'ClusterName', | |
'Value': re.sub(r'^.*/', '', cluster_name) | |
}], | |
'Timestamp': datetime.datetime.now(), | |
'Value': schedulable_containers | |
}) | |
logger.debug('Sending the following metrics to CloudWatch: {}', metric_data) | |
cw.put_metric_data(Namespace='AWS/ECS', | |
MetricData=metric_data) | |
logger.info('Metric was sent to CloudWatch') | |
return {} | |
def get_max_cpu(tasks): | |
max_cpu = 1 | |
for task in tasks: | |
if task['cpu'] == 0: | |
raise Exception('Task {} does not have CPU reservation specified in AOT cluster'.format(task['taskArn'])) | |
if int(task['cpu']) > max_cpu: | |
max_cpu = int(task['cpu']) | |
return max_cpu | |
def get_aot_autoscaling_groups(): | |
paginator = autoscaling.get_paginator('describe_auto_scaling_groups') | |
page_iterator = paginator.paginate( | |
PaginationConfig={'PageSize': 100} | |
) | |
# NOTE: only ASGs with the tag aot_schedulable=yes will be retrieved | |
filtered_asgs = page_iterator.search( | |
'AutoScalingGroups[] | [?contains(Tags[?Key==`{}`].Value, `{}`)]'.format( | |
'aot_schedulable', 'yes') | |
) | |
return list(filtered_asgs) | |
def get_tasks(cluster): | |
tasks = [] | |
response = {'nextToken': ''} | |
while 'nextToken' in response: | |
response = ecs.list_tasks(cluster=cluster, maxResults=100) | |
tasks.extend(response['taskArns']) | |
if len(tasks) > 0: | |
result = ecs.describe_tasks( | |
cluster=cluster, | |
tasks=tasks | |
) | |
return result['tasks'] | |
else: | |
return [] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment