Last active
August 23, 2016 05:54
-
-
Save devforfu/d8bb13fc20092634f2d6ceb9a4da197f to your computer and use it in GitHub Desktop.
Cart Pole Balancing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Combination of Sutton's approach dividing space into boxes with simple | |
TD-learning algorithm (see basic_rl.py somewhere on gym portal). | |
Some simulation paramteres are hardcoded and learner is not universal. | |
""" | |
from collections import defaultdict | |
import math | |
import numpy as np | |
import gym | |
FIFTY_DEGREES_IN_RADIANS = 0.87266 | |
class CartPoleLearner: | |
def __init__(self, env): | |
self.env = env | |
def encode_state(self, state): | |
""" | |
Converts raw continuous state into one of discreate states (see https://webdocs.cs.ualberta.ca/~sutton/book/code/pole.c) | |
Args: | |
state (list): A raw state, i.e. list of x, x_dot, theta and theta_dot. | |
Returns: | |
box (int): A discrete state. | |
""" | |
x, x_dot, theta, theta_dot = state | |
env = self.env | |
x_limit, theta_limit = env.x_threshold, env.theta_threshold_radians | |
half_theta_limit = theta_limit/2 | |
one_twelveth_theta_limit = theta_limit/12 | |
cart_in_limits = -x_limit < x < x_limit | |
pole_in_limits = -theta_limit < theta < theta_limit | |
if not cart_in_limits or not pole_in_limits: | |
return 0 | |
box = (1 if x < -0.8 else | |
2 if x < 0.8 else | |
3) | |
if x_dot < -0.5: | |
pass | |
elif x_dot < 0.5: | |
box += 3 | |
else: | |
box += 6 | |
if theta < -half_theta_limit: | |
pass | |
elif theta < -one_twelveth_theta_limit: | |
box += 9 | |
elif theta < 0: | |
box += 18 | |
elif theta < one_twelveth_theta_limit: | |
box += 27 | |
elif theta < half_theta_limit: | |
box += 36 | |
else: | |
box += 45 | |
if theta_dot < -FIFTY_DEGREES_IN_RADIANS: | |
pass | |
elif theta_dot < FIFTY_DEGREES_IN_RADIANS: | |
box += 54 | |
else: | |
box += 108 | |
return box | |
def learn(self): | |
""" | |
Solves pole-balancing task using basic version of TD algorithm. | |
""" | |
def epsilon_greedy(state, q_values, eps): | |
a = np.argmax(q_values[state, :]) | |
if np.random.rand() < eps: | |
a = np.random.randint(q_values.shape[1]) | |
return a | |
mean, std = 0, 1 | |
episodes = 5000 | |
max_step = 1000 | |
eps = 0.75 | |
alpha = 0.5 | |
beta = 0.0 | |
gamma = 0.95 | |
eps_decay = 0.995 | |
ave_cumu_r = None | |
env = self.env | |
n_s = 163 | |
n_a = env.action_space.n | |
qs = mean + std * np.random.randn(n_s, n_a) | |
for episode in range(episodes): | |
cumu_r = 0 | |
curr_s = self.encode_state(env.reset()) | |
curr_a = epsilon_greedy(curr_s, qs, eps) | |
for step in range(max_step): | |
# env.render() | |
raw_s, r, done, _ = env.step(curr_a) | |
# core part | |
next_s = self.encode_state(raw_s) | |
next_a = epsilon_greedy(next_s, qs, eps) | |
delta = r + gamma*qs[next_s, next_a] - qs[curr_s, curr_a] | |
qs[curr_s, curr_a] += alpha * delta | |
curr_s, curr_a = next_s, next_a | |
# track to decrease epsilon | |
cumu_r = r + gamma * cumu_r | |
if done: | |
kappa = 0.01 | |
if ave_cumu_r is None: | |
ave_cumu_r = cumu_r | |
else: | |
ave_cumu_r = kappa*cumu_r + (1 - kappa)*ave_cumu_r | |
print("Episode {} ended on step {} with average cumulative " | |
"reward: {}".format(episode, step, ave_cumu_r)) | |
if cumu_r > ave_cumu_r: | |
eps *= eps_decay | |
history.append(ave_cumu_r) | |
break | |
def main(): | |
env = gym.make('CartPole-v0') | |
learner = CartPoleLearner(env) | |
learner.learn() | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment