Created
December 15, 2021 21:51
-
-
Save devharsh/e375e7fcc5aa780ac0e59b68e767cb9e to your computer and use it in GitHub Desktop.
Evaluating classification algorithms on a multi-class single feature problem
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from sklearn.linear_model import LogisticRegression | |
from sklearn import svm | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.neural_network import MLPClassifier | |
from sklearn.model_selection import train_test_split | |
df = pd.DataFrame(columns=['Number','Class']) | |
for i in range(122): | |
flag3 = False | |
flag5 = False | |
if i%3 == 0: | |
flag3 = True | |
if i%5 == 0: | |
flag5 = True | |
if flag3 and flag5: | |
df.loc[i] = [str(i)] + ['fizzbuzz'] | |
elif flag3: | |
df.loc[i] = [str(i)] + ['fizz'] | |
elif flag5: | |
df.loc[i] = [str(i)] + ['buzz'] | |
else: | |
df.loc[i] = [str(i)] + ['blank'] | |
X = df[['Number']] | |
y = df.Class | |
X_tr, X_test, y_tr, y_test = train_test_split(X, y, random_state = 0) | |
LR = LogisticRegression(random_state=0, solver='lbfgs', | |
multi_class='multinomial').fit(X_tr, y_tr) | |
LR.predict(X_test) | |
print(round(LR.score(X_test,y_test), 4)) | |
SVM = svm.SVC(decision_function_shape="ovo").fit(X_tr, y_tr) | |
SVM.predict(X_test) | |
print(round(SVM.score(X_test, y_test), 4)) | |
RF = RandomForestClassifier(n_estimators=1000, max_depth=10, | |
random_state=0).fit(X_tr, y_tr) | |
RF.predict(X_test) | |
print(round(RF.score(X_test, y_test), 4)) | |
NN = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(150, 10), | |
random_state=1).fit(X_tr, y_tr) | |
NN.predict(X_test) | |
print(round(NN.score(X_test, y_test), 4)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment