Last active
November 26, 2020 17:05
-
-
Save devmachiine/0aa6db5dcb80e7f1492e8068b969fcd1 to your computer and use it in GitHub Desktop.
Neural network in F#
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
//------------------------------- Define Network ------------------------------- | |
type Activation = | |
| Linear | |
| Binary | |
| Tanh | |
| ReLU | |
type Neuron = { Weights: float list; Bias: float } | |
type Layer = | |
{ Neurons: Neuron list | |
Output: Activation } | |
type Network = { Layers: Layer list } | |
let rnd = System.Random() | |
let randomWeight _ = (2.0 * rnd.NextDouble()) - 1.0 | |
let buildNeuron inputs = | |
{ Neuron.Weights = List.init inputs randomWeight | |
Bias = randomWeight () } | |
let buildLayer inputs neurons activation = | |
{ Layer.Neurons = List.init neurons (fun i -> buildNeuron inputs) | |
Output = activation } | |
let buildNetwork inputs layerSpecs = | |
let rec createLayers acc layerInputs specs = | |
match specs with | |
| [] -> List.rev acc | |
| (neurons, activation) :: nextSpecs -> | |
let newLayer = | |
buildLayer layerInputs neurons activation | |
createLayers (newLayer :: acc) neurons nextSpecs | |
{ Network.Layers = createLayers [] inputs layerSpecs } | |
//------------------------------- Compute Result ------------------------------- | |
let transform activation = | |
match activation with | |
| Linear -> id | |
| Tanh -> tanh | |
| ReLU -> max 0.0 | |
| Binary -> (fun x -> if x > 0.0 then 1.0 else 0.0) | |
let neuronOutput neuron inputs activation = | |
let weightedSum = | |
List.zip neuron.Weights inputs | |
|> List.sumBy (fun (w, i) -> w * i) | |
activation (weightedSum + neuron.Bias) | |
let layerOutput layer inputs = | |
let activation = (transform layer.Output) | |
layer.Neurons | |
|> List.map (fun neuron -> neuronOutput neuron inputs activation) | |
let networkOutput network inputs = | |
let rec feedForward data layers = | |
match layers with | |
| [] -> data | |
| layer :: remainingLayers -> | |
let nextLayerInput = layerOutput layer data | |
feedForward nextLayerInput remainingLayers | |
feedForward inputs network.Layers | |
//------------------------------- Compute Errors ------------------------------- | |
type TrainingCase = | |
{ Inputs: float list | |
Outputs: float list } | |
let outputError (expected, computed): float = | |
let error = expected - computed | |
error * error | |
let caseError (expected, computed) = | |
List.zip expected computed | |
|> List.sumBy outputError | |
let networkError network trainingCases = | |
trainingCases | |
|> List.map (fun case -> (case.Outputs, networkOutput network case.Inputs)) | |
|> List.sumBy caseError | |
//------------------------------- Train Network ------------------------------- | |
type SearchConstraints = { MaxSeconds: float; MinError: float } | |
let mutateSearch (trainingSet: TrainingCase list) layerSpecs changeProbability searchConstraints = | |
let inputs = | |
trainingSet | |
|> List.map (fun case -> case.Inputs.Length) | |
|> List.max | |
let outputs = | |
trainingSet | |
|> List.map (fun case -> case.Outputs.Length) | |
|> List.max | |
let adjustedLayerSpecs = | |
match List.last layerSpecs with | |
| (neurons, _activation) when neurons = outputs -> layerSpecs | |
| _ -> layerSpecs @ [ (outputs, Linear) ] | |
let initialNetwork = buildNetwork inputs adjustedLayerSpecs | |
let maybeMutate x = | |
if rnd.NextDouble() < changeProbability then randomWeight () * 2.0 * x else x | |
let mutateNeuron n = | |
{ Weights = n.Weights |> List.map (fun w -> maybeMutate w) | |
Bias = maybeMutate n.Bias } | |
let mutateLayer l = | |
{ Neurons = l.Neurons |> List.map mutateNeuron | |
Output = l.Output } | |
let mutateNetwork n = | |
{ Layers = n.Layers |> List.map mutateLayer } | |
let stopwatch = System.Diagnostics.Stopwatch.StartNew() | |
let rec findNext bestNetwork oldError i = | |
match stopwatch.Elapsed.TotalSeconds with | |
| timeout when i % 10 = 0 | |
&& timeout > searchConstraints.MaxSeconds -> | |
printfn "Timeout @ %A" timeout | |
printfn "iteration: %A" i | |
bestNetwork | |
| elapsed -> | |
let nn = mutateNetwork bestNetwork | |
let newError = networkError nn trainingSet | |
if newError < oldError then | |
if i % 10 = 0 then printfn "e %f i: %i" newError i | |
if newError > searchConstraints.MinError then | |
findNext nn newError (i + 1) | |
else | |
printfn "Stopped @ %A" elapsed | |
printfn "iteration: %A" i | |
nn | |
else | |
findNext bestNetwork oldError (i + 1) | |
findNext initialNetwork (networkError initialNetwork trainingSet) 0 | |
//----------------------------------- Test ----------------------------------- | |
let runTraining trainingData layerSpecs = | |
let trainedNetwork = | |
mutateSearch trainingData layerSpecs 0.07 { MaxSeconds = 5.0; MinError = 0.01 } | |
let formatFloats = List.map (fun f -> sprintf "%.2f" f) | |
trainingData | |
|> List.iter (fun case -> | |
printfn | |
"feedForward %A gives %A vs %A" | |
case.Inputs | |
(formatFloats (networkOutput trainedNetwork case.Inputs)) | |
(formatFloats case.Outputs)) | |
printfn "Network error: %A" (networkError trainedNetwork trainingData) | |
// ---------- Test 1/3 -> linear function ------------------------ | |
let xorGate = | |
[ { Inputs = [ 1.0; 1.0 ] | |
Outputs = [ 0.0 ] } | |
{ Inputs = [ 0.0; 1.0 ] | |
Outputs = [ 1.0 ] } | |
{ Inputs = [ 1.0; 0.0 ] | |
Outputs = [ 1.0 ] } | |
{ Inputs = [ 0.0; 0.0 ] | |
Outputs = [ 0.0 ] } ] | |
runTraining xorGate [ (9, ReLU); (5, ReLU) ] | |
// ---------- Test 2/3 -> non-linear function -------------------- | |
let tanData = | |
[ -1.75 .. 0.37 .. 1.75 ] | |
@ [ -999999.0; 999999.0 ] | |
@ [ -1000.0; 1000.0 ] | |
@ [ 0.0 ] | |
|> List.map (fun d -> { Inputs = [ d ]; Outputs = [ tanh d ] }) | |
let xyReLU x y = List.init x (fun _ -> (y, ReLU)) | |
runTraining tanData (xyReLU 7 5) | |
// ---------- Test 3/3 -> multiple-output ------------------------ | |
let oodle i = if i % 2 = 0 then [ 9; 0 ] else [ 4; 7 ] | |
let oodleData = | |
[ 1 .. 4 ] | |
|> List.map (fun i -> | |
{ Inputs = [ float i ] | |
Outputs = oodle i |> List.map float }) | |
runTraining oodleData ([ (17, ReLU); (9, ReLU) ] @ (xyReLU 5 5)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment