(main source; other info; even more help)
Step 1: make sure to have gfortran installed
Step 2: clone the OpenBLAS repo.
git clone https://github.com/xianyi/OpenBLAS| import sys; from PIL import Image; import numpy as np | |
| chars = np.asarray(list(' .,:;irsXA253hMHGS#9B&@')) | |
| if len(sys.argv) != 4: print( 'Usage: ./asciinator.py image scale factor' ); sys.exit() | |
| f, SC, GCF, WCF = sys.argv[1], float(sys.argv[2]), float(sys.argv[3]), 7/4 | |
| img = Image.open(f) | |
| S = ( round(img.size[0]*SC*WCF), round(img.size[1]*SC) ) | |
| img = np.sum( np.asarray( img.resize(S) ), axis=2) |
| var gulp = require('gulp') | |
| var browserify = require('browserify') | |
| var watchify = require('watchify') | |
| var babelify = require('babelify') | |
| var source = require('vinyl-source-stream') | |
| var buffer = require('vinyl-buffer') | |
| var merge = require('utils-merge') |
| /* | |
| * Directory structure: | |
| * | |
| * project/ | |
| * package.json | |
| * gulpfile.js | |
| * node_modules/ | |
| * src/ | |
| * dist/ | |
| * |
(main source; other info; even more help)
Step 1: make sure to have gfortran installed
Step 2: clone the OpenBLAS repo.
git clone https://github.com/xianyi/OpenBLAS| import React from 'react'; | |
| import { Sector, Cell, PieChart, Pie } from 'recharts'; | |
| const GaugeChart = () => { | |
| const width = 500; | |
| const chartValue = 180; | |
| const colorData = [{ | |
| value: 40, // Meaning span is 0 to 40 | |
| color: '#663399' | |
| }, { |
| #!/bin/bash | |
| # Notes: | |
| # | |
| # 1. Works for tags and specific hash commits too (override mesa_branch variable with needed value). | |
| # | |
| # 2. By default builds for /opt/mesa-<branch> and places the result in ${HOME}/mnt/vmshare/mesa-<branch> | |
| # You can override the build deployment location by setting dest_dir. For example this should put it right away | |
| # in /opt/mesa-<branch> | |
| # |
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # You'll need a TLS terminating proxy (apache,nginx) in front of this | |
| # This is a simple Hello World Alexa Skill, built using | |
| # the decorators approach in skill builder. | |
| import logging | |
| from flask import Flask |