Last active
February 5, 2018 01:43
-
-
Save dfaker/d9ed2da75c76582b8807ab1e530b6ee8 to your computer and use it in GitHub Desktop.
imageGapsScanner
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy | |
import argparse | |
import os | |
import json | |
from tqdm import tqdm | |
import cv2 | |
def main(args): | |
if not os.path.exists(args.input_dir_a[0]): | |
raise Exception("Folder A {} does not exist".format(args.input_dir_a[0])) | |
if not os.path.exists(args.input_dir_b[0]): | |
raise Exception("Folder B {} does not exist".format(args.input_dir_b[0])) | |
dira = args.input_dir_a[0] | |
dirb = args.input_dir_b[0] | |
alinmentsFileName = 'alignments.json' | |
alignmentsa = os.path.join( dira,alinmentsFileName ) | |
alignmentsb = os.path.join( dirb,alinmentsFileName ) | |
if not os.path.exists(alignmentsa): | |
raise Exception("Folder A {} does not contain an alignments.json file".format(args.input_dir_a[0])) | |
if not os.path.exists(alignmentsb): | |
raise Exception("Folder B {} does not contain an alignments.json file".format(args.input_dir_b[0])) | |
alignmentsa = json.loads( open(alignmentsa).read() ) | |
pointsa = [] | |
filenamesa = [] | |
pbar = tqdm(alignmentsa) | |
for original,cropped,mat,points in pbar: | |
cropped = os.path.split(cropped)[1] | |
cropped = os.path.join(dira,cropped) | |
croppedjpg = cropped.replace('.png','.jpg') | |
croppedpng = cropped.replace('.jpg','.png') | |
if (not os.path.exists(croppedjpg)) and os.path.exists(croppedpng): | |
cropped = croppedpng | |
if (not os.path.exists(croppedpng)) and os.path.exists(croppedjpg): | |
cropped = croppedjpg | |
if os.path.exists(cropped): | |
mat = numpy.array(mat).reshape(2,3) | |
facepoints = cv2.transform( numpy.array( points ).reshape((1,-1,2)) , mat).reshape(-1,2).astype(int) | |
pointsa.append( numpy.array(facepoints).reshape((-1,2)) ) | |
filenamesa.append(cropped) | |
alignmentsb = json.loads( open(alignmentsb).read() ) | |
pointsb = [] | |
filenamesb = [] | |
pbar = tqdm(alignmentsb) | |
for original,cropped,mat,points in pbar: | |
cropped = os.path.split(cropped)[1] | |
cropped = os.path.join(dirb,cropped) | |
croppedjpg = cropped.replace('.png','.jpg') | |
croppedpng = cropped.replace('.jpg','.png') | |
if (not os.path.exists(croppedjpg)) and os.path.exists(croppedpng): | |
cropped = croppedpng | |
if (not os.path.exists(croppedpng)) and os.path.exists(croppedjpg): | |
cropped = croppedjpg | |
if os.path.exists(cropped): | |
mat = numpy.array(mat).reshape(2,3) | |
facepoints = cv2.transform( numpy.array( points ).reshape((1,-1,2)) , mat).reshape(-1,2).astype(int) | |
pointsb.append( numpy.array(facepoints).reshape((-1,2)) ) | |
filenamesb.append(cropped) | |
if len(filenamesa)<9: | |
raise Exception("Folder A {} must contain at least 9 images, {} found".format(args.input_dir_a[0],len(filenamesa))) | |
if len(filenamesb)<9: | |
raise Exception("Folder B {} must contain at least 9 images, {} found".format(args.input_dir_b[0],len(filenamesb))) | |
pointsa = numpy.array(pointsa) | |
pointsb = numpy.array(pointsb) | |
distancesa = [] | |
for ind in range(0,pointsa.shape[0]): | |
closest = ( numpy.mean(numpy.square(pointsa[ind]-pointsb),axis=(1,2)) ).min() | |
distancesa.append((closest,ind)) | |
distancesb = [] | |
for ind in range(0,pointsb.shape[0]): | |
closest = ( numpy.mean(numpy.square(pointsb[ind]-pointsa),axis=(1,2)) ).min() | |
distancesb.append((closest,ind)) | |
worsta = numpy.concatenate( [ cv2.imread(filenamesa[x[1]]) for x in sorted(distancesa,reverse=True)[:9]], axis=1) | |
worstb = numpy.concatenate( [ cv2.imread(filenamesb[x[1]]) for x in sorted(distancesb,reverse=True)[:9]], axis=1) | |
worst = numpy.concatenate((worsta, worstb), axis=0) | |
cv2.imshow("",worst) | |
cv2.waitKey(0) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Compares two folders containing images and an alinments.json') | |
parser.add_argument( "input_dir_a", type=str, nargs=1, help='First folder for comparison of contents') | |
parser.add_argument( "input_dir_b", type=str, nargs=1, help='Second folder for comparison of contents' ) | |
main( parser.parse_args() ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment