Last active
April 8, 2018 09:58
-
-
Save dfalbel/a5d63d6bffe683072cc4781d7c8420ff to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(readr) | |
library(keras) | |
library(purrr) | |
FLAGS <- flags( | |
flag_integer("vocab_size", 50000), | |
flag_integer("max_len_padding", 20), | |
flag_integer("embedding_size", 256), | |
flag_numeric("regularization", 0.0001), | |
flag_integer("seq_embedding_size", 512) | |
) | |
df <- read_tsv("quora_duplicate_questions.tsv") | |
tokenizer <- text_tokenizer(num_words = FLAGS$vocab_size) | |
fit_text_tokenizer(tokenizer, x = c(df$question1, df$question2)) | |
question1 <- texts_to_sequences(tokenizer, df$question1) | |
question2 <- texts_to_sequences(tokenizer, df$question2) | |
question1 <- pad_sequences(question1, maxlen = FLAGS$max_len_padding, value = FLAGS$vocab_size + 1) | |
question2 <- pad_sequences(question2, maxlen = FLAGS$max_len_padding, value = FLAGS$vocab_size + 1) | |
# keras model | |
input1 <- layer_input(shape = c(FLAGS$max_len_padding)) | |
input2 <- layer_input(shape = c(FLAGS$max_len_padding)) | |
embedding <- layer_embedding( | |
input_dim = FLAGS$vocab_size + 2, | |
output_dim = FLAGS$embedding_size, | |
input_length = FLAGS$max_len_padding, | |
embeddings_regularizer = regularizer_l2(l = FLAGS$regularization) | |
) | |
seq_emb <- layer_lstm( | |
units = FLAGS$seq_embedding_size, | |
recurrent_regularizer = regularizer_l2(l = FLAGS$regularization) | |
) | |
vector1 <- embedding(input1) %>% | |
seq_emb() | |
vector2 <- embedding(input2) %>% | |
seq_emb() | |
out <- layer_dot(list(vector1, vector2), axes = 1) %>% | |
layer_dense(1, activation = "sigmoid") | |
model <- keras_model(list(input1, input2), out) | |
model %>% compile( | |
optimizer = "adam", | |
loss = "binary_crossentropy", | |
metrics = list( | |
acc = metric_binary_accuracy | |
) | |
) | |
set.seed(1817328) | |
val_sample <- sample.int(nrow(question1), size = 0.1*nrow(question1)) | |
model %>% | |
fit( | |
list(question1[-val_sample,], question2[-val_sample,]), | |
df$is_duplicate[-val_sample], | |
batch_size = 128, | |
epochs = 30, | |
validation_data = list( | |
list(question1[val_sample,], question2[val_sample,]), df$is_duplicate[val_sample] | |
), | |
callbacks = list( | |
callback_early_stopping(patience = 5), | |
callback_reduce_lr_on_plateau(patience = 3) | |
) | |
) | |
save_model_hdf5(model, "model-question-pairs.hdf5", include_optimizer = TRUE) | |
save_text_tokenizer(tokenizer, "tokenizer-question-pairs.hdf5") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment