-
-
Save dfischer/039edb4dba915fb2ca3a065080811f08 to your computer and use it in GitHub Desktop.
script to run deepseek-r1 with a min-thinking-tokens parameter, replacing </think> with a random continuation string to extend the model's chain of thought
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import random | |
import sys | |
from transformers import AutoModelForCausalLM, AutoTokenizer, DynamicCache | |
import torch | |
parser = argparse.ArgumentParser() | |
parser.add_argument("question", type=str) | |
parser.add_argument( | |
"-m", "--model-name", default="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" | |
) | |
parser.add_argument("-d", "--device", default="auto") | |
parser.add_argument( | |
"-r", "--replacements", nargs="+", default=["\nWait, but", "\nHmm", "\nSo"] | |
) | |
parser.add_argument("-t", "--min-thinking-tokens", type=int, default=128) | |
args = parser.parse_args() | |
tokenizer = AutoTokenizer.from_pretrained(args.model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
args.model_name, torch_dtype=torch.bfloat16, device_map=args.device | |
) | |
start_think_token, end_think_token = tokenizer.encode("<think></think>") | |
@torch.inference_mode | |
def reasoning_effort(question: str, min_thinking_tokens: int): | |
tokens = tokenizer.apply_chat_template( | |
[{"role": "user", "content": question}], | |
add_generation_prompt=True, | |
return_tensors="pt", | |
) | |
tokens = torch.cat((tokens, torch.tensor([[start_think_token]])), dim=-1) | |
tokens = tokens.to(model.device) | |
kv = DynamicCache() | |
n_thinking_tokens = 0 | |
yield tokenizer.decode(list(tokens[0])) | |
while True: | |
out = model(input_ids=tokens, past_key_values=kv, use_cache=True) | |
next_token = torch.multinomial( | |
torch.softmax(out.logits[0, -1, :], dim=-1), 1 | |
).item() | |
kv = out.past_key_values | |
if next_token == model.config.eos_token_id: | |
break | |
elif next_token == end_think_token and n_thinking_tokens < min_thinking_tokens: | |
replacement = random.choice(args.replacements) | |
yield replacement | |
replacement_tokens = tokenizer.encode(replacement) | |
n_thinking_tokens += len(replacement_tokens) | |
tokens = torch.tensor([replacement_tokens]).to(tokens.device) | |
else: | |
yield tokenizer.decode([next_token]) | |
n_thinking_tokens += 1 | |
tokens = torch.tensor([[next_token]]).to(tokens.device) | |
for chunk in reasoning_effort(args.question, args.min_thinking_tokens): | |
print(chunk, end="", flush=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment