Skip to content

Instantly share code, notes, and snippets.

@dfm
Last active March 29, 2022 05:15
Show Gist options
  • Save dfm/2f38b8349221ccfd9df38f93a99c1de9 to your computer and use it in GitHub Desktop.
Save dfm/2f38b8349221ccfd9df38f93a99c1de9 to your computer and use it in GitHub Desktop.
Live coded notebooks for the GPRV workshop. Check out https://github.com/dfm/gprv for more self contained versions.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "b102d5cc-0756-45d8-ae50-abcf03538936",
"metadata": {},
"source": [
"# Introduction to `jax`"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "e627de02-c33d-4dbc-a287-539c95ecb0b7",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/homebrew/Caskroom/miniforge/base/envs/tinygp/lib/python3.9/site-packages/jax/_src/lib/__init__.py:32: UserWarning: JAX on Mac ARM machines is experimental and minimally tested. Please see https://github.com/google/jax/issues/5501 in the event of problems.\n",
" warnings.warn(\"JAX on Mac ARM machines is experimental and minimally tested. \"\n"
]
}
],
"source": [
"import jax\n",
"\n",
"jax.config.update(\"jax_enable_x64\", True)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2e832a0c-cb6b-47b3-9d5b-f83837bdaafe",
"metadata": {},
"outputs": [],
"source": [
"import jax.numpy as jnp"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8ff69de5-8f8a-44cc-8c6f-e8e66807108f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([0. , 0.5, 1. , 1.5, 2. ], dtype=float64)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = jnp.linspace(0, 2, 5)\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "37ea9bd7-dfa5-45ba-a8f6-27018461f090",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([0. , 0.47942554, 0.84147098, 0.99749499, 0.90929743], dtype=float64)"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jnp.sin(x)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "c578f014-e232-4834-a207-6ef518e97a50",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"y = np.linspace(0, 2, 5)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d04e872f-d9c1-4914-80ac-7c912cec721f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([0. , 0.47942554, 0.84147098, 0.99749499, 0.90929743], dtype=float64)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jnp.sin(y)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "048206c1-71b0-4bd7-af7e-6b663f309045",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0. , 0.47942554, 0.84147098, 0.99749499, 0.90929743])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"np.sin(x)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "1505361c-677a-4f66-b437-cd29cd67bbb9",
"metadata": {},
"outputs": [],
"source": [
"from functools import partial\n",
"\n",
"@partial(jax.jit, backend=\"cpu\")\n",
"def func(x):\n",
" arg = jnp.sin(x)\n",
" return 1.5 + jnp.exp(arg)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "7082e98a-22d8-4c85-834c-18af44fe7ecd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([2.5 , 3.1151463 , 3.81977682, 4.21148102, 3.98257773], dtype=float64)"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"func(x)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "d257b2ad-e12f-4ac0-9361-aa6608ab369b",
"metadata": {},
"outputs": [],
"source": [
"grad_func = jax.grad(func)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "68574e9d-69ab-4743-884a-843003f7b23e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray(1.41742422, dtype=float64, weak_type=True)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grad_func(0.5)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "ffa28e94-1ae0-4617-bc73-404f344c3fe9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([ 1. , 1.41742422, 1.25338077, 0.19180258,\n",
" -1.03311687], dtype=float64)"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jax.vmap(grad_func)(x)"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "0e6c7d7b-8e68-4022-8f69-565c15eee9fe",
"metadata": {},
"outputs": [],
"source": [
"def func(params):\n",
" arg = jnp.sin(params[\"a\"])\n",
" return params[\"b\"] + jnp.exp(arg)"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "e1104a4b-eddc-4e24-8a20-3e6f2730ac22",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([1. , 2.1151463 , 3.31977682, 4.21148102, 4.48257773], dtype=float64)"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"params = {\n",
" \"a\": np.linspace(0, 2, 5),\n",
" \"b\": jnp.linspace(0, 2, 5),\n",
"}\n",
"func(params)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "6f528892-f419-42c3-bfe4-34733660aa43",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DeviceArray([1. , 2.1151463 , 3.31977682, 4.21148102, 4.48257773], dtype=float64)"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"func(params)"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "31f97436-719a-4036-914c-4e469299a9df",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'a': DeviceArray([ 1. , 1.41742422, 1.25338077, 0.19180258,\n",
" -1.03311687], dtype=float64),\n",
" 'b': DeviceArray([1., 1., 1., 1., 1.], dtype=float64)}"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"jax.vmap(jax.grad(func))(params)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e4071c23-3e78-4608-8e53-0b760d5ccb0c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment