Created
April 22, 2024 00:28
-
-
Save dfsnow/f2a2cee82fb71d1b7e2b5998f9237024 to your computer and use it in GitHub Desktop.
Testing out r5r's routing and travel time matrix functions
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Increase Java memory | |
options(java.parameters = "-Xmx10G") | |
# Load libraries | |
library(data.table) | |
library(dplyr) | |
library(ggplot2) | |
library(ggspatial) | |
library(osmdata) | |
library(osmextract) | |
library(r5r) | |
library(sf) | |
library(tigris) | |
# Populate an input/ dir with a .pbf file. For Chicago: | |
# wget --no-use-server-timestamps -O input/chicago.osm https://overpass-api.de/api/map?bbox=-87.8558,41.6229,-87.5085,42.0488 | |
# osmium cat input/chicago.osm -o input/chicago.osm.pbf | |
r5r_core <- setup_r5(data_path = "input/") | |
# Setup some input parameters for a route | |
mode <- "BICYCLE" | |
departure_datetime <- Sys.time() | |
origin <- data.frame( | |
id = "Trader Joe's", | |
lat = 41.95085364900005, | |
lon = -87.67506868730602 | |
) | |
dest <- data.frame( | |
id = "Aldi", | |
lat = 41.96381358872797, | |
lon = -87.65687040135536 | |
) | |
# Create a single detailed route and corresponding map | |
route_single_df <- detailed_itineraries( | |
r5r_core = r5r_core, | |
origins = origin, | |
destinations = dest, | |
departure_datetime = departure_datetime, | |
mode = mode, | |
max_lts = 1, | |
shortest_path = TRUE, | |
progress = TRUE | |
) | |
ggplot() + | |
ggspatial::annotation_map_tile(zoomin = -1, type = "cartolight") + | |
geom_sf(data = route_single_df, color = "blue") | |
# Load all 2020 Census block centroids and clip them to the Chicago boundary | |
blocks_gdf <- tigris::blocks(state = "IL", county = "Cook", year = 2020) %>% | |
st_centroid() | |
chicago_gdf <- tigris::places(state = "IL", year = 2020) %>% | |
filter(NAME == "Chicago") | |
blocks_gdf_clipped <- blocks_gdf %>% | |
st_intersection(chicago_gdf) %>% | |
st_transform(4326) | |
blocks_df <- blocks_gdf_clipped %>% | |
st_coordinates() %>% | |
as.data.frame() %>% | |
setNames(c("lon", "lat")) %>% | |
mutate(id = blocks_gdf_clipped$GEOID20) | |
# Route from 2 origins to a sample of Chicago Census block centroids | |
# Takes ~580s for 20K OD pairs w 60 min cutoff on an M2 Macbook Air | |
tictoc::tic() | |
route_multi_df <- detailed_itineraries( | |
r5r_core = r5r_core, | |
origins = rbind(origin, dest), | |
destinations = blocks_df %>% slice_sample(n = 1000), | |
departure_datetime = departure_datetime, | |
mode = mode, | |
max_bike_time = 60, | |
max_lts = 1, | |
all_to_all = TRUE, | |
shortest_path = TRUE, | |
progress = TRUE | |
) | |
tictoc::toc() | |
ggplot() + | |
ggspatial::annotation_map_tile(zoom = 14, type = "cartolight") + | |
geom_sf(data = route_multi_df, aes(color = from_id), alpha = 0.5) | |
# Route from 2 origins to a sample of Chicago Census block centroids | |
# Takes ~1.2s for 20K OD pairs w 60 min cutoff on an M2 Macbook Air | |
tictoc::tic() | |
travel_time_df <- travel_time_matrix( | |
r5r_core = r5r_core, | |
origins = rbind(origin, dest), | |
destinations = blocks_df, | |
departure_datetime = departure_datetime, | |
mode = mode, | |
max_bike_time = 60, | |
max_lts = 1, | |
progress = TRUE | |
) | |
tictoc::toc() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment