Last active
January 5, 2022 01:00
-
-
Save dgergel/bc7e1a3f0011aca3d82c4d2603a35777 to your computer and use it in GitHub Desktop.
validate ERA-5 precip for a single gridcell
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# install packages not already on impactlab server | |
# !pip install xclim | |
# ! pip install cdsapi | |
%matplotlib inline | |
import xarray as xr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import os | |
import gcsfs | |
from matplotlib import cm | |
import warnings | |
import cdsapi | |
# wrapper function for passing impactlab token to gcsfs | |
def read_gcs_zarr(zarr_url, token='/opt/gcsfuse_tokens/impactlab-data.json', check=False): | |
""" | |
takes in a GCSFS zarr url, bucket token, and returns a dataset | |
Note that you will need to have the proper bucket authentication. | |
""" | |
fs = gcsfs.GCSFileSystem(token=token) | |
store_path = fs.get_mapper(zarr_url, check=check) | |
ds = xr.open_zarr(store_path) | |
return ds | |
# load ERA-5 versions | |
# ERA-5 "coarse" and "fine" (both at 1/4 degree) used in downscaling | |
pr_coarse_ref = read_gcs_zarr('gs://scratch-170cd6ec/91da8e47-b396-4360-b397-ece89f1b777e/e2e-miroc6-pr-8rn7f-2846959676/rechunked.zarr') | |
pr_fine_ref = read_gcs_zarr('gs://scratch-170cd6ec/91da8e47-b396-4360-b397-ece89f1b777e/e2e-miroc6-pr-8rn7f-587431548/rechunked.zarr') | |
# ERA-5 at regular Gaussian resolution, "cleaned" by renaming variable/dims | |
pr_cleaned_ref = read_gcs_zarr('gs://clean-b1dbca25/reanalysis/ERA-5/F320/pr.1995-2015.F320.zarr') | |
# ERA-5 at regular Gaussian resolution | |
pr_raw_ref = read_gcs_zarr('gs://impactlab-data/climate/source_data/ERA-5/downscaling/pr.1994-2015.F320.v5.zarr') | |
# define Seattle lat/lon | |
target_lat = 47.608013 | |
target_lon = -122.335167 | |
# download some era-5 data. Note this won't work if you don't have credentials, | |
# so you'll have to go online to ECMWF and get them if you want to replicate this. | |
# Otherwise you can grab the file at this location on impactlab-data. | |
filename = '/gcs/impactlab-data/climate/source_data/ERA-5/era5_pr_monthly_download_debug.nc' | |
c = cdsapi.Client() | |
# define small geographic area around Seattle | |
c.retrieve( | |
'reanalysis-era5-single-levels-monthly-means', | |
{ | |
'format': 'netcdf', | |
'product_type': 'monthly_averaged_reanalysis', | |
'variable': 'total_precipitation', | |
'year': [ | |
'2000', '2001', '2002', | |
'2003', '2004', '2005', | |
'2006', '2007', '2008', | |
'2009', '2010', | |
], | |
'month': [ | |
'01', '02', '03', | |
'04', '05', '06', | |
'07', '08', '09', | |
'10', '11', '12', | |
], | |
'time': '00:00', | |
'area': [ | |
49, -124, 46, | |
-121, | |
], | |
}, | |
filename) | |
# open the new precip from CDS | |
new_pr_monthly = xr.open_dataset(filename) | |
# now get Seattle timeseries from each of these ERA-5 versions | |
pr_seattle_pipeline = pr_cleaned_ref['pr'].sel(lon=target_lon, lat=target_lat, method="nearest").load() | |
pr_seattle_pipeline_coarse = pr_coarse_ref['pr'].sel(lon=target_lon, lat=target_lat, method="nearest").load() | |
pr_seattle_pipeline_fine = pr_fine_ref['pr'].sel(lon=target_lon, lat=target_lat, method="nearest").load() | |
pr_seattle_pipeline_raw = pr_raw_ref['tp'].sel(longitude=target_lon, latitude=target_lat, method="nearest").load() | |
# note CDS precip is in m so we're also converting it to mm | |
pr_seattle_cds_mo_mean = new_pr_monthly['tp'].sel(longitude=target_lon, latitude=target_lat, method="nearest") * 1000 | |
# ERA-5 data is monthly average of daily mean, so each month value is not a "monthly mean" but an avg daily value for that month. So here we convert each "avg daily value for a month" by the number of days in that month to get a monthly total precip | |
pr_seattle_cds_mo_total = pr_seattle_cds_mo_mean * new_pr_monthly.time.dt.days_in_month | |
# take a look at the different resolutions of ERA-5 versions | |
print(pr_coarse_ref['pr'].shape) | |
print(pr_fine_ref['pr'].shape) | |
print(pr_raw_ref['tp'].shape) | |
print(pr_cleaned_ref['pr'].shape) | |
print(new_pr_monthly['tp'].shape) | |
# plot Seattle annual total precip | |
plt.figure(figsize=(14, 4)) | |
pr_seattle_cds_mo_total.groupby('time.year').sum().plot(label='new CDS ERA-5 data') | |
pr_seattle_pipeline.groupby('time.year').sum().plot(label='our pipeline, cleaned') | |
pr_seattle_pipeline.groupby('time.year').sum().plot(label='our pipeline, raw', linestyle=':') | |
pr_seattle_pipeline_coarse.groupby('time.year').sum().plot(label='our pipeline, coarse') | |
pr_seattle_pipeline_fine.groupby('time.year').sum().plot(label='our pipeline, fine') | |
plt.legend(bbox_to_anchor=(1.1, 1.05)) | |
plt.ylabel('precip (mm)') | |
plt.title('Seattle annual precip') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment