Created
June 17, 2016 16:35
-
-
Save dggoldst/38b383e2cba78f0b1c28375c55ac445a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ggplot2) | |
library(dplyr) | |
setwd("C:/Dropbox/Projects/20160610_Range_Heuristic") | |
v_get_random_betas = Vectorize(rbeta) | |
ALPHAS = c(1, 2, 5, 1) | |
BETAS = c(5, 5, 5, 1) | |
DISTS = c("Floor", "Left of center", "Normalish", "Uniform") | |
NS = seq(10, 70, by = 5) | |
ITERS = 1e4 | |
#Tests | |
if (length(ALPHAS) != length(BETAS)) { | |
stop("alphas and betas must be equal length") | |
} | |
if (length(ALPHAS) != length(DISTS)) { | |
stop("every Distributio needs a name") | |
} | |
#Create a data frame | |
df = data.frame( | |
iter = rep(1:ITERS, each = length(ALPHAS) * length(NS)), | |
n = rep(NS, each = length(ALPHAS)), | |
alpha = ALPHAS, | |
beta = BETAS, | |
Distribution = DISTS | |
) | |
system.time({ | |
#Compute the true and approximate SD | |
df = df %>% mutate( | |
beta_values = v_get_random_betas(n, alpha, beta), | |
sd = unlist(lapply(beta_values, sd)), | |
min = unlist(lapply(beta_values, min)), | |
max = unlist(lapply(beta_values, max)), | |
heuristic_sd = abs(min - max) / 4, | |
ape = abs(sd - heuristic_sd) / sd * 100 #average percentage error | |
) | |
}) | |
#Summarize to get mean average percentage error | |
sdf = df %>% | |
group_by(n, Distribution) %>% | |
summarise(mape = mean(ape), | |
ape_se = sqrt(var(ape) / length(ape))) | |
View(sdf) | |
p = ggplot(sdf, | |
aes( | |
x = n, | |
y = mape, | |
group = Distribution, | |
color = Distribution, | |
shape = Distribution | |
)) + | |
geom_line() + | |
geom_point() + | |
labs(x = "Sample size", | |
y = "Mean Absolute Percent Error", | |
title = "Range / 4 Heuristic") + | |
scale_y_continuous(limits = c(0, 50)) + | |
scale_x_continuous(breaks = seq(10, 70, by = 10)) + | |
theme(legend.position = "bottom") | |
p | |
#ggsave(plot=p,file="range.heuristic.png",width=4.5,height=5) | |
ITER2 = 1000 | |
df2 = data.frame( | |
Distribution = c( | |
rep("Floor", ITER2 * 50), | |
rep("Left of center", ITER2 * 50), | |
rep("Normalish", ITER2 * 50), | |
rep("Uniform", ITER2 * 50) | |
), | |
values = c( | |
unlist( | |
subset(df, n == 50 & | |
Distribution == "Floor" & iter <= ITER2)$beta_values | |
), | |
unlist( | |
subset(df, n == 50 & | |
Distribution == "Left of center" & iter <= ITER2)$beta_values | |
), | |
unlist( | |
subset(df, n == 50 & | |
Distribution == "Normalish" & iter <= ITER2)$beta_values | |
), | |
unlist( | |
subset(df, n == 50 & | |
Distribution == "Uniform" & iter <= ITER2)$beta_values | |
) | |
) | |
) | |
p = ggplot(df2, aes(x = values, fill = Distribution)) + | |
geom_density(alpha = .3, bw = .0025) + | |
facet_grid(Distribution ~ .) + | |
theme(legend.position = "bottom") | |
p | |
#ggsave(plot=p,file="range.heuristic.dists.png",width=4.5,height=5) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment