Created
September 1, 2013 19:55
-
-
Save dginev/6406905 to your computer and use it in GitHub Desktop.
LaTeXML's DefMath Lexicon
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
DefMath('\mathring{}', "\x{030A}", operator_role=>'OVERACCENT'); | |
DefMathI('\arrowvert', undef, "|", role=>'VERTBAR'); | |
DefMathI('\Arrowvert', undef, "\x{2225}",role=>'VERTBAR'); | |
DefMathI('\cdotp', undef,"\x{22C5}", role=>'MULOP'); | |
DefMathI('\ldotp', undef,".", role=>'MULOP'); | |
DefMathI('\intop', undef,"\x{222B}", role=>'INTOP', meaning=>'integral', | |
DefMathI('\ointop', undef,"\x{222E}", role=>'INTOP', meaning=>'contour-integral', | |
DefMathI('\mapstochar', undef,"\x{21A6}", role=>'ARROW', meaning=>'maps-to'); | |
DefMathI('\owns', undef,"\x{220B}", role=>'RELOP', meaning=>'contains'); | |
DefMath('\circledbar', "\x{29B6}"); | |
DefMath('\circledbslash', "\x{29B8}"); | |
DefMath('\circledvee', "\x{2228}\x{20DD}"); # overlay circle? | |
DefMath('\circledwedge', "\x{2227}\x{20DD}"); # overlay cirxle? | |
DefMath('\invamp', "\x{214B}"); | |
DefMath('\boxast', "\x{29C6}"); | |
DefMath('\boxbar', "\x{25EB}"); # ? | |
DefMath('\boxbslash', "\x{29C4}"); | |
DefMath('\boxslash', "\x{29C5}"); | |
DefMath('\circleddot', "\x{2299}"); | |
DefMath('\circledminus', "\x{2296}"); | |
DefMath('\circledplus', "\x{2295}"); | |
DefMath('\circledslash', "\x{2298}"); | |
DefMath('\circledtimes', "\x{2297}"); | |
DefMath('\fint', "\x{2A0F}", meaning=>'integral', role=>'INTOP', | |
DefMath('\fintop', "\x{2A0F}", meaning=>'integral', role=>'INTOP', | |
DefMath('\idotsint', "\x{222B}\x{22EF}\x{222B}", meaning=>'multiple-integral', role=>'INTOP', | |
DefMath('\idotsintop', "\x{222B}\x{22EF}\x{222B}", meaning=>'multiple-integral', role=>'INTOP', | |
DefMath('\iint', "\x{222C}", meaning=>'double-integral', role=>'INTOP', | |
DefMath('\iintop', "\x{222C}", meaning=>'double-integral', role=>'INTOP', | |
DefMath('\iiint', "\x{222D}", meaning=>'triple-integral', role=>'INTOP', | |
DefMath('\iiintop', "\x{222D}", meaning=>'triple-integral', role=>'INTOP', | |
DefMath('\iiiint', "\x{2A0C}", meaning=>'quadruple-integral', role=>'INTOP', | |
DefMath('\iiiintop', "\x{2A0C}", meaning=>'quadruple-integral', role=>'INTOP', | |
DefMath('\oiiintclockwise', "\x{222D}\x{20D9}", | |
DefMath('\oiiintclockwiseop', "\x{222D}\x{20D9}", | |
DefMath('\varoiiintclockwise', "\x{222D}\x{20D9}", | |
DefMath('\varoiiintclockwiseop', "\x{222D}\x{20D9}", | |
DefMath('\oiiintctrclockwise', "\x{222D}\x{20DA}", | |
DefMath('\oiiintctrclockwiseop', "\x{222D}\x{20DA}", | |
DefMath('\varoiiintctrclockwise', "\x{222D}\x{20DA}", | |
DefMath('\varoiiintctrclockwiseop', "\x{222D}\x{20DA}", | |
DefMath('\oiiint', "\x{2230}", | |
DefMath('\oiiintop', "\x{2230}", | |
DefMath('\oiintclockwise', "\x{222C}\x{20D9}", | |
DefMath('\oiintclockwiseop', "\x{222C}\x{20D9}", | |
DefMath('\varoiintclockwise', "\x{222C}\x{20D9}", | |
DefMath('\varoiintclockwiseop', "\x{222C}\x{20D9}", | |
DefMath('\oiintctrclockwise', "\x{222C}\x{20DA}", | |
DefMath('\oiintctrclockwiseop', "\x{222C}\x{20DA}", | |
DefMath('\varoiintctrclockwise', "\x{222C}\x{20DA}", | |
DefMath('\varoiintctrclockwiseop', "\x{222C}\x{20DA}", | |
DefMath('\oiint', "\x{222F}", meaning=>'double-contour-integral', role=>'INTOP', | |
DefMath('\oiintop', "\x{222F}", meaning=>'double-contour-integral', role=>'INTOP', | |
DefMath('\ointclockwise', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP', | |
DefMath('\ointclockwiseop', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP', | |
DefMath('\ointctrclockwise', "\x{2233}", meaning=>'counter-clockwise-contour-integral', | |
DefMath('\ointctrclockwiseop', "\x{2233}", meaning=>'counter-clockwise-contour-integral', role=>'INTOP', | |
DefMath('\varointclockwise', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP', | |
DefMath('\varointclockwiseop', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP', | |
DefMath('\varointctrclockwise', "\x{2233}", meaning=>'counter-clockwise-contour-integral', | |
DefMath('\varointctrclockwiseop',"\x{2233}", meaning=>'counter-clockwise-contour-integral', | |
DefMath('\sqint', "\x{2A16}",role=>'INTOP', meaning=>'square-contour-integral', | |
DefMath('\boxdotleft', "\x{2190}\x{22A1}", role=>'RELOP'); | |
DefMath('\boxdotLeft', "\x{21D0}\x{22A1}", role=>'RELOP'); | |
DefMath('\boxdotright', "\x{22A1}\x{2192}", role=>'RELOP'); | |
DefMath('\boxdotRight', "\x{22A1}\x{21D2}", role=>'RELOP'); | |
DefMath('\boxleft', "\x{2190}\x{25A1}", role=>'RELOP'); | |
DefMath('\boxLeft', "\x{21D0}\x{25A1}", role=>'RELOP'); | |
DefMath('\boxright', "\x{25A1}\x{2192}", role=>'RELOP'); | |
DefMath('\boxRight', "\x{25A1}\x{21D2}", role=>'RELOP'); | |
DefMath('\circleddotleft', "\x{2190}\x{2299}", role=>'RELOP'); | |
DefMath('\circleddotright', "\x{2299}\x{2192}", role=>'RELOP'); | |
DefMath('\circledgtr', "\x{29C1}", role=>'RELOP'); | |
DefMath('\circledless', "\x{29C0}", role=>'RELOP'); | |
DefMath('\circleleft', "\x{2190}\x{25CB}", role=>'RELOP'); | |
DefMath('\circleright', "\x{25CB}\x{2192}", role=>'RELOP'); | |
DefMath('\colonapprox', ":\x{2248}", role=>'RELOP'); | |
DefMath('\Colonapprox', "::\x{2248}", role=>'RELOP'); | |
DefMath('\coloneq', ":-", role=>'RELOP'); | |
DefMath('\Coloneq', "::-", role=>'RELOP'); | |
DefMath('\coloneqq', "\x{2254}", role=>'RELOP'); | |
DefMath('\Coloneqq', "\x{2A74}", role=>'RELOP'); | |
DefMath('\colonsim', ":\x{223C}", role=>'RELOP'); | |
DefMath('\Colonsim', "::\x{223C}", role=>'RELOP'); | |
DefMath('\Diamonddotleft', "\x{2190}\x{27D0}", role=>'RELOP'); | |
DefMath('\DiamonddotLeft', "\x{21D0}\x{27D0}", role=>'RELOP'); | |
DefMath('\Diamonddotright', "\x{27D0}\x{2192}", role=>'RELOP'); | |
DefMath('\DiamonddotRight', "\x{27D0}\x{21D2}", role=>'RELOP'); | |
DefMath('\Diamondleft', "\x{2190}\x{25C7}", role=>'RELOP'); | |
DefMath('\DiamondLeft', "\x{21D0}\x{25C7}", role=>'RELOP'); | |
DefMath('\Diamondright', "\x{25C7}\x{2192}", role=>'RELOP'); | |
DefMath('\DiamondRight', "\x{25C7}\x{21D2}", role=>'RELOP'); | |
DefMath('\Eqcolon', "-::", role=>'RELOP'); | |
DefMath('\eqcolon', "-:", role=>'RELOP'); | |
DefMath('\Eqqcolon', "=::", role=>'RELOP'); | |
DefMath('\eqqcolon', "\x{2255}", role=>'RELOP'); | |
DefMath('\eqsim', "\x{2242}", role=>'RELOP'); | |
DefMath('\leftsquigarrow', "\x{21DC}", role=>'RELOP'); | |
DefMath('\lJoin', "\x{22C9}", role=>'RELOP'); | |
DefMath('\lrtimes', "\x{22C8}", role=>'RELOP'); # ? | |
DefMath('\Join', "\x{22C8}", role=>'RELOP'); | |
DefMath('\lrJoin', "\x{22C8}", role=>'RELOP'); | |
DefMath('\Mappedfromchar', "\x{2AE4}", role=>'RELOP'); | |
DefMath('\mappedfromchar', "\x{2ADE}", role=>'RELOP'); | |
DefMath('\mmapstochar', "\x{2AE3}", role=>'RELOP'); | |
DefMath('\Mmapstochar', "\x{2AE5}", role=>'RELOP'); | |
DefMath('\multimapboth', "\x{29DF}", role=>'RELOP'); | |
DefMath('\multimapdotbothA', "\x{22B6}", role=>'RELOP'); | |
DefMath('\multimapdotbothB', "\x{22B7}", role=>'RELOP'); | |
DefMath('\multimapinv', "\x{27DC}", role=>'RELOP'); | |
DefMath('\napproxeq', "\x{224A}\x{0338}", meaning=>'not-approximately-equals', role=>'RELOP'); | |
DefMath('\nasymp', "\x{226D}", meaning=>'not-equivalent-to', role=>'RELOP'); | |
DefMath('\nbacksim', "\x{223D}\x{0337}", role=>'RELOP'); | |
DefMath('\nbacksimeq', "\x{224C}\x{0338}", role=>'RELOP'); | |
DefMath('\nBumpeq', "\x{224E}\x{0338}", role=>'RELOP'); | |
DefMath('\nbumpeq', "\x{224F}\x{0338}", role=>'RELOP'); | |
DefMath('\Nearrow', "\x{21D7}", role=>'ARROW'); | |
DefMath('\nequiv', "\x{2262}", meaning=>'not-equivalent-to', role=>'RELOP'); | |
DefMath('\ngg', "\x{226B}\x{0338}", role=>'RELOP'); | |
DefMath('\ngtrapprox', "\x{2A86}\x{0338}", | |
DefMath('\ngtrless', "\x{2278}", | |
DefMath('\ngtrsim', "\x{2275}", | |
DefMath('\nlessapprox', "\x{2A85}\x{0338}", | |
DefMath('\nlessgtr', "\x{2279}", | |
DefMath('\nlesssim', "\x{2274}", | |
DefMath('\nll', "\x{226A}\x{0338}", | |
DefMath('\notin', "\x{2209}", | |
DefMath('\notni', "\x{220C}", | |
DefMath('\notowns', "\x{220C}", | |
DefMath('\nprecapprox', "\x{2AB7}\x{0338}", | |
DefMath('\npreccurlyeq', "\x{22E0}", | |
DefMath('\npreceqq', "\x{2AB3}\x{0338}", role=>'RELOP', | |
DefMath('\nprecsim', "\x{227E}\x{0338}", role=>'RELOP', | |
DefMath('\nsimeq', "\x{2243}\x{0338}", role=>'RELOP', | |
DefMath('\nsqsubset', "\x{228F}\x{0338}", role=>'RELOP', | |
DefMath('\nsqsubseteq', "\x{22E2}", role=>'RELOP', | |
DefMath('\nsqsupset', "\x{2290}\x{0338}", role=>'RELOP', | |
DefMath('\nsqsupseteq', "\x{22E3}", role=>'RELOP', | |
DefMath('\nSubset', "\x{22D0}\x{0338}", role=>'RELOP', | |
DefMath('\nsubseteqq', "\x{2AC5}\x{0338}", role=>'RELOP', | |
DefMath('\nsuccapprox', "\x{2AB8}\x{0338}", role=>'RELOP', | |
DefMath('\nsucccurlyeq', "\x{22E1}", role=>'RELOP', | |
DefMath('\nsucceqq', "\x{2AB4}\x{0338}", role=>'RELOP', | |
DefMath('\nsuccsim', "\x{227F}\x{0338}", role=>'RELOP', | |
DefMath('\nSupset', "\x{22D1}\x{0338}", role=>'RELOP', | |
DefMath('\nthickapprox', "\x{2249}", role=>'RELOP', | |
DefMath('\ntwoheadleftarrow', "\x{2B34}", role=>'RELOP'); | |
DefMath('\ntwoheadrightarrow', "\x{2900}", role=>'RELOP'); | |
DefMath('\nVdash', "\x{22AE}", role=>'RELOP', | |
DefMath('\Nwarrow', "\x{21D6}", role=>'ARROW'); | |
DefMath('\Perp', "\x{2AEB}", role=>'RELOP'); | |
DefMath('\preceqq', "\x{2AB3}", role=>'RELOP', | |
DefMath('\precneqq', "\x{2AB5}", role=>'RELOP', | |
DefMath('\rJoin', "\x{22CA}", role=>'RELOP', | |
DefMath('\Rrightarrow', "\x{21DB}", role=>'RELOP'); | |
DefMath('\Searrow', "\x{21D8}", role=>'ARROW'); | |
DefMath('\strictfi', "\x{297C}", role=>'RELOP'); | |
DefMath('\strictif', "\x{297D}", role=>'RELOP'); | |
DefMath('\strictiff', "\x{297C}\x{297D}", role=>'RELOP'); | |
DefMath('\succeqq', "\x{2AB4}", role=>'RELOP', | |
DefMath('\succneqq', "\x{2AB6}", role=>'RELOP', | |
DefMath('\Swarrow', "\x{21D9}", role=>'ARROW'); | |
DefMath('\varparallel', "\x{2AFD}", role=>'RELOP'); | |
DefMath('\napprox', "\x{2249}", meaning=>'not-approximately-equals', role=>'RELOP'); | |
DefMath('\nsubset', "\x{2284}", meaning=>'not-subset-of', role=>'RELOP'); | |
DefMath('\nsupset', "\x{2285}", meaning=>'not-superset-of', role=>'RELOP'); | |
DefMath('\Longmappedfrom', "\x{27FD}", role=>'ARROW'); | |
DefMath('\Longmapsto', "\x{27FE}", role=>'ARROW'); | |
DefMath('\Mappedfrom', "\x{2906}", role=>'ARROW'); | |
DefMath('\Mapsto', "\x{2907}", role=>'ARROW'); | |
DefMath('\alphaup', "\x{03B1}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ALPHA | |
DefMath('\betaup', "\x{03B2}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER BETA | |
DefMath('\gammaup', "\x{03B3}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER GAMMA | |
DefMath('\deltaup', "\x{03B4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER DELTA | |
DefMath('\epsilonup' , "\x{03F5}", font=>{shape=>'upright',forceshape=>1}); # GREEK LUNATE EPSILON SYMBOL | |
DefMath('\varepsilonup',"\x{03B5}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER EPSILON | |
DefMath('\zetaup', "\x{03B6}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ZETA | |
DefMath('\etaup', "\x{03B7}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ETA | |
DefMath('\thetaup', "\x{03B8}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER THETA | |
DefMath('\varthetaup', "\x{03D1}", font=>{shape=>'upright',forceshape=>1}); # GREEK THETA SYMBOL | |
DefMath('\iotaup', "\x{03B9}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER IOTA | |
DefMath('\kappaup', "\x{03BA}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER KAPPA | |
DefMath('\lambdaup', "\x{03BB}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER LAMDA | |
DefMath('\muup', "\x{03BC}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER MU | |
DefMath('\nuup', "\x{03BD}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER NU | |
DefMath('\xiup', "\x{03BE}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER XI | |
DefMath('\piup', "\x{03C0}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PI | |
DefMath('\varpiup', "\x{03D6}", font=>{shape=>'upright',forceshape=>1}); # GREEK PI SYMBOL | |
DefMath('\rhoup', "\x{03C1}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER RHO | |
DefMath('\varrhoup', "\x{03F1}", font=>{shape=>'upright',forceshape=>1}); # GREEK RHO SYMBOL | |
DefMath('\sigmaup', "\x{03C3}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER SIGMA | |
DefMath('\varsigmaup', "\x{03C2}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER FINAL SIGMA | |
DefMath('\tauup', "\x{03C4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER TAU | |
DefMath('\upsilonup', "\x{03C5}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER UPSILON | |
DefMath('\phiup', "\x{03D5}", font=>{shape=>'upright',forceshape=>1}); # GREEK PHI SYMBOL | |
DefMath('\varphiup', "\x{03C6}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PHI | |
DefMath('\chiup', "\x{03C7}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER CHI | |
DefMath('\psiup', "\x{03C8}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PSI | |
DefMath('\omegaup', "\x{03C9}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER OMEGA | |
DefMath('\varg', "\x{210A}"); | |
DefMath('\Diamondblack', "\x{25C6}"); | |
DefMath('\Diamonddot', "\x{27D0}"); | |
DefMath('\mathcent', UTF(0xA2)); | |
DefMath('\mathsterling', UTF(0xA3)); | |
DefMath('\varclubsuit', "\x{2667}"); | |
DefMath('\vardiamondsuit', "\x{2666}"); | |
DefMath('\varheartsuit', "\x{2665}"); | |
DefMath('\varspadesuit', "\x{2664}"); | |
DefMath('\llbracket', "\x{27E6}", role=>'OPEN'); | |
DefMath('\rrbracket', "\x{27E7}", role=>'CLOSE'); | |
DefMath('\@vec{}','#1', role=>'ID',font=>{forcebold=>1}); | |
DefMath('\@tens{}','\mathsf{#1}', role=>'ID'); # semantics? | |
DefMath('\la', "\x{2272}", role=>'RELOP', meaning=>'less-than-or-similar-to'); | |
DefMath('\ga', "\x{2273}", role=>'RELOP', meaning=>'greater-than-or-similar-to'); | |
DefMath('\cor', "\x{2258}", role=>'RELOP', meaning=>'corresonds-to'); | |
DefMath('\sol', "\x{2A9D}", role=>'RELOP', meaning=>'similar-to-or-less-than'); | |
DefMath('\sog', "\x{2A9E}", role=>'RELOP', meaning=>'similar-to-or-greater-than'); | |
DefMath('\lse', "\x{2A8D}", role=>'RELOP', meaning=>'less-than-or-similar-to-or-equal'); | |
DefMath('\gse', "\x{2A8E}", role=>'RELOP', meaning=>'greater-than-or-similar-to-or-equal'); | |
DefMath('\leogr', "\x{2276}", role=>'RELOP', meaning=>'less-than-or-greater-than'); | |
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than'); | |
DefMath('\loa', "\x{2A85}", role=>'RELOP', meaning=>'less-than-or-approximately-equals'); | |
DefMath('\goa', "\x{2A86}", role=>'RELOP', meaning=>'greater-than-or-approximately-equals'); | |
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals'); | |
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals'); | |
DefMath('\getsto', "\x{21C6}", role=>'ARROW'); | |
DefMath('\getsto', "\x{21C6}", role=>'ARROW'); | |
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals'); | |
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals'); | |
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than'); | |
DefMath('\ulcorner',"\x{231C}"); # TOP LEFT CORNER | |
DefMath('\urcorner',"\x{231D}"); # TOP RIGHT CORNER | |
DefMath('\llcorner',"\x{231E}"); # BOTTOM LEFT CORNER | |
DefMath('\lrcorner',"\x{231F}"); # BOTTOM RIGHT CORNER | |
DefMath('\dashrightarrow',"\x{21E2}", role=>'ARROW'); # RIGHTWARDS DASHED ARROW | |
DefMath('\dashleftarrow', "\x{21E0}", role=>'ARROW'); # LEFTWARDS DASHED ARROW | |
DefMath('\dasharrow', "\x{21E2}", role=>'ARROW'); # RIGHTWARDS DASHED ARROW | |
DefMath('\square',"\x{25A1}"); # WHITE SQUARE | |
DefMath('\lozenge',"\x{25C6}"); # WHITE DIAMOND | |
DefMath('\vartriangleright',"\x{22B3}"); # CONTAINS AS NORMAL SUBGROUP (\rhd) | |
DefMath('\vartriangleleft',"\x{22B2}"); # NORMAL SUBGROUP OF (\lhd) | |
DefMath('\trianglerighteq',"\x{22B5}"); # CONTAINS AS NORMAL SUBGROUP OR EQUAL TO (\unrhd) | |
DefMath('\trianglelefteq',"\x{22B4}"); # NORMAL SUBGROUP OF OR EQUAL TO (\unlhd) | |
DefMath('\rightsquigarrow',"\x{219D}", role=>'ARROW'); # RIGHTWARDS WAVE ARROW | |
DefMath('\omicron', "\x{03BF}"); # GREEK SMALL LETTER OMICRON | |
DefMath('\ualpha', "\x{03B1}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ALPHA | |
DefMath('\ubeta', "\x{03B2}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER BETA | |
DefMath('\uchi', "\x{03C7}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER CHI | |
DefMath('\udelta', "\x{03B4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER DELTA | |
DefMath('\ugamma', "\x{03B3}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER GAMMA | |
DefMath('\umu', "\x{03BC}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER MU | |
DefMath('\unu', "\x{03BD}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER NU | |
DefMath('\upi', "\x{03C0}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PI | |
DefMath('\utau', "\x{03C4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER TAU | |
DefMath('\varDelta', "\x{0394}",font=>{shape=>'italic'}); | |
DefMath('\varGamma', "\x{0393}",font=>{shape=>'italic'}); | |
DefMath('\varLambda', "\x{039B}",font=>{shape=>'italic'}); | |
DefMath('\varOmega', "\x{03A9}",font=>{shape=>'italic'}); | |
DefMath('\varPhi', "\x{03A6}",font=>{shape=>'italic'}); | |
DefMath('\varPi', "\x{03A0}",font=>{shape=>'italic'}); | |
DefMath('\varPsi', "\x{03A8}",font=>{shape=>'italic'}); | |
DefMath('\varSigma', "\x{03A3}",font=>{shape=>'italic'}); | |
DefMath('\varTheta', "\x{0398}",font=>{shape=>'italic'}); | |
DefMath('\varUpsilon', "\x{03A5}",font=>{shape=>'italic'}); | |
DefMath('\varXi', "\x{039E}",font=>{shape=>'italic'}); | |
DefMath('\getsto', "\x{21C6}", role=>'ARROW'); | |
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals'); | |
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals'); | |
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than'); | |
DefMath('\and', '\&', role=>'ADDOP', meaning=>'and'); | |
DefMath('\rmd', "\x{2146}", role=>'DIFFOP', meaning=>'differential-d'); | |
DefMath('\rme', "\x{2147}", role=>'ID', meaning=>'exponential-e'); | |
DefMath('\rmi', "\x{2148}", role=>'ID', meaning=>'imaginary-i'); | |
DefMath('\Tr','\mathrm{Tr}', role=>'OPFUNCTION', meaning=>'trace'); | |
DefMath('\tr','\mathrm{tr}', role=>'OPFUNCTION', meaning=>'trace'); | |
DefMath('\Or','\mathrm{O}', role=>"OPFUNCTION", meaning=>'Big-O'); | |
DefMath('\tdot Digested', "\x{2026}", operator_role=>'OVERACCENT'); | |
DefMath('\lshad', "\x{27E6}", role=>'OPEN'); | |
DefMath('\rshad', "\x{27E7}", role=>'CLOSE'); | |
DefMath('\digamma', "\x{03DD}"); # GREEK SMALL LETTER DIGAMMA | |
DefMath('\varkappa', "\x{03F0}"); # GREEK KAPPA SYMBOL | |
DefMath('\beth', "\x{2136}"); # BET SYMBOL | |
DefMath('\daleth', "\x{2138}"); # DALET SYMBOL | |
DefMath('\gimel', "\x{2137}"); # GIMEL SYMBOL | |
DefMath('\hslash', "\x{210F}", role=>'ID', meaning=>'Planck-constant-over-2-pi'); | |
DefMath('\vartriangle', "\x{25B3}"); | |
DefMath('\triangledown', "\x{25BD}"); | |
DefMath('\circledS', "\x{24C8}"); | |
DefMath('\measuredangle', "\x{2221}"); | |
DefMath('\nexists', "\x{2204}", role=>'FUNCTION', meaning=>'not-exists'); | |
DefMath('\Finv', "\x{2132}"); | |
DefMath('\Game', "\x{2141}"); | |
DefMath('\Bbbk', "\x{1D55C}"); | |
DefMath('\backprime', "\x{2035}"); | |
DefMath('\varnothing', "\x{2205}", role=>'ID', meaning=>'empty-set'); | |
DefMath('\blacktriangle', "\x{25B2}"); | |
DefMath('\blacktriangledown', "\x{25BC}"); | |
DefMath('\blacksquare', "\x{25A0}"); | |
DefMath('\blacklozenge', "\x{25C6}"); | |
DefMath('\bigstar', "\x{2605}"); | |
DefMath('\sphericalangle', "\x{2222}"); | |
DefMath('\complement', "\x{2201}", meaning=>'complement'); | |
DefMath('\eth', UTF(0xF0)); | |
DefMath('\diagup', "\x{2571}"); | |
DefMath('\diagdown', "\x{2572}"); | |
DefMath('\dotplus', "\x{2214}", role=>'ADDOP'); # DOT PLUS | |
DefMath('\smallsetminus', "\x{2216}", role=>'ADDOP', meaning=>'set-minus'); | |
DefMath('\Cap', "\x{22D2}", role=>'ADDOP', meaning=>'double-intersection'); | |
DefMath('\doublecap', "\x{22D2}", role=>'ADDOP', meaning=>'double-intersection'); | |
DefMath('\Cup', "\x{22D3}", role=>'ADDOP', meaning=>'double-union'); | |
DefMath('\doublecup', "\x{22D3}", role=>'ADDOP', meaning=>'double-union'); | |
DefMath('\barwedge', "\x{22BC}", role=>'ADDOP', meaning=>'not-and'); | |
DefMath('\veebar', "\x{22BB}", role=>'ADDOP', meaning=>'exclusive-or'); | |
DefMath('\doublebarwedge', "\x{2A5E}", role=>'ADDOP'); | |
DefMath('\boxminus', "\x{229F}", role=>'ADDOP'); # SQUARED MINUS | |
DefMath('\boxtimes', "\x{22A0}", role=>'MULOP'); # SQUARED TIMES | |
DefMath('\boxdot', "\x{22A1}", role=>'MULOP'); # SQUARED DOT OPERATOR | |
DefMath('\boxplus', "\x{229E}", role=>'ADDOP'); # SQUARED PLUS | |
DefMath('\divideontimes', "\x{22C7}", role=>'MULOP'); # DIVISION TIMES | |
DefMath('\ltimes', "\x{22C9}", role=>'MULOP', meaning=>'left-normal-factor-semidirect-product'); | |
DefMath('\rtimes', "\x{22CA}", role=>'MULOP', meaning=>'right-normal-factor-semidirect-product'); | |
DefMath('\leftthreetimes', "\x{22CB}", role=>'MULOP', meaning=>'left-semidirect-product'); | |
DefMath('\rightthreetimes', "\x{22CC}", role=>'MULOP', meaning=>'right-semidirect-product'); | |
DefMath('\curlywedge', "\x{22CF}", role=>'ADDOP', meaning=>'and'); | |
DefMath('\curlyvee', "\x{22CE}", role=>'ADDOP', meaning=>'or'); | |
DefMath('\circleddash', "\x{229D}", role=>'ADDOP'); # CIRCLED DASH | |
DefMath('\circledast', "\x{229B}", role=>'MULOP'); # CIRCLED ASTERISK OPERATOR | |
DefMath('\circledcirc', "\x{229A}", role=>'MULOP'); # CIRCLED RING OPERATOR | |
DefMath('\centerdot', "\x{2219}", role=>'MULOP'); # CIRCLED DOT OPERATOR | |
DefMath('\intercal', "\x{22BA}", role=>'ADDOP'); # INTERCALATE | |
DefMath('\leqq', "\x{2266}", role=>'RELOP', | |
DefMath('\leqslant', "\x{2A7D}", role=>'RELOP', | |
DefMath('\eqslantless', "\x{2A95}", role=>'RELOP', | |
DefMath('\lesssim', "\x{2272}", role=>'RELOP', | |
DefMath('\lessapprox', "\x{2A85}", role=>'RELOP', | |
DefMath('\approxeq', "\x{224A}", role=>'RELOP', | |
DefMath('\lessdot', "\x{22D6}", role=>'RELOP'); # LESS-THAN WITH DOT | |
DefMath('\lll', "\x{22D8}", role=>'RELOP', | |
DefMath('\llless', "\x{22D8}", role=>'RELOP', | |
DefMath('\lessgtr', "\x{2276}", role=>'RELOP', | |
DefMath('\lesseqgtr', "\x{22DA}", role=>'RELOP', | |
DefMath('\lesseqqgtr', "\x{2A8B}", role=>'RELOP', | |
DefMath('\doteqdot', "\x{2251}", role=>'RELOP', | |
DefMath('\Doteq', "\x{2251}", role=>'RELOP', | |
DefMath('\risingdotseq', "\x{2253}", role=>'RELOP', | |
DefMath('\fallingdotseq', "\x{2252}", role=>'RELOP', | |
DefMath('\backsim', "\x{223D}", role=>'RELOP'); # REVERSED TILDE | |
DefMath('\backsimeq', "\x{224C}", role=>'RELOP'); # ALL EQUAL TO; Note: this has double rather than single bar!!! | |
DefMath('\subseteqq', "\x{2AC5}", role=>'RELOP', | |
DefMath('\Subset', "\x{22D0}", role=>'RELOP', | |
DefMath('\preccurlyeq', "\x{227C}", role=>'RELOP', | |
DefMath('\curlyeqprec', "\x{22DE}", role=>'RELOP', | |
DefMath('\precsim', "\x{227E}", role=>'RELOP', | |
DefMath('\precapprox', "\x{2AB7}", role=>'RELOP', | |
DefMath('\vDash', "\x{22A8}", role=>'RELOP'); # TRUE | |
DefMath('\Vvdash', "\x{22AA}", role=>'RELOP'); # TRIPLE VERTICAL BAR RIGHT TURNSTILE | |
DefMath('\smallsmile', "\x{2323}", role=>'RELOP'); # SMILE (small ?) | |
DefMath('\smallfrown', "\x{2322}", role=>'RELOP'); # FROWN (small ?) | |
DefMath('\bumpeq', "\x{224F}", role=>'RELOP', | |
DefMath('\Bumpeq', "\x{224E}", role=>'RELOP', | |
DefMath('\geqq', "\x{2267}", role=>'RELOP', | |
DefMath('\geqslant', "\x{2A7E}", role=>'RELOP', | |
DefMath('\eqslantgtr', "\x{2A96}", role=>'RELOP', | |
DefMath('\gtrsim', "\x{2273}", role=>'RELOP', | |
DefMath('\gtrapprox', "\x{2A86}", role=>'RELOP', | |
DefMath('\eqsim', "\x{2242}", role=>'RELOP'); # MINUS TILDE | |
DefMath('\gtrdot', "\x{22D7}", role=>'RELOP'); # GREATER-THAN WITH DOT | |
DefMath('\ggg', "\x{22D9}", role=>'RELOP', | |
DefMath('\gggtr', "\x{22D9}", role=>'RELOP', | |
DefMath('\gtrless', "\x{2277}", role=>'RELOP', | |
DefMath('\gtreqless', "\x{22DB}", role=>'RELOP', | |
DefMath('\gtreqqless', "\x{2A8C}", role=>'RELOP', | |
DefMath('\eqcirc', "\x{2256}", role=>'RELOP'); # RING IN EQUAL TO | |
DefMath('\circeq', "\x{2257}", role=>'RELOP'); # RING EQUAL TO | |
DefMath('\triangleq', "\x{225C}", role=>'RELOP'); # DELTA EQUAL TO | |
DefMath('\thicksim', "\x{223C}", role=>'RELOP'); # TILDE OPERATOR; Not thick!!! | |
DefMath('\thickapprox', "\x{2248}", role=>'RELOP', | |
DefMath('\supseteqq', "\x{2AC6}", role=>'RELOP', | |
DefMath('\Supset', "\x{22D1}", role=>'RELOP', | |
DefMath('\succcurlyeq', "\x{227D}", role=>'RELOP', | |
DefMath('\curlyeqsucc', "\x{22DF}", role=>'RELOP', | |
DefMath('\succsim', "\x{227F}", role=>'RELOP', | |
DefMath('\succapprox', "\x{2AB8}", role=>'RELOP', | |
DefMath('\Vdash', "\x{22A9}", role=>'RELOP', | |
DefMath('\shortmid', "\x{2223}", role=>'RELOP', | |
DefMath('\shortparallel', "\x{2225}", role=>'RELOP', | |
DefMath('\between', "\x{226C}", role=>'RELOP', | |
DefMath('\pitchfork', "\x{22D4}", role=>'RELOP', | |
DefMath('\varpropto', "\x{221D}", role=>'RELOP', | |
DefMath('\blacktriangleleft', "\x{25C0}", role=>'RELOP'); # BLACK LEFT-POINTING TRIANGLE | |
DefMath('\therefore', "\x{2234}", role=>'METARELOP', | |
DefMath('\backepsilon', "\x{03F6}", role=>'RELOP'); # GREEK REVERSED LUNATE EPSILON SYMBOL | |
DefMath('\blacktriangleright', "\x{25B6}", role=>'RELOP'); # BLACK RIGHT-POINTING TRIANGLE | |
DefMath('\because', "\x{2235}", role=>'METARELOP', | |
DefMath('\nless', "\x{226E}", role=>'RELOP', | |
DefMath('\nleq', "\x{2270}", role=>'RELOP', | |
DefMath('\nleqslant', "\x{2A7D}\x{0338}", role=>'RELOP', | |
DefMath('\nleqq', "\x{2266}\x{0338}", role=>'RELOP', | |
DefMath('\lneq', "\x{2A87}", role=>'RELOP', | |
DefMath('\lneqq', "\x{2268}", role=>'RELOP', | |
DefMath('\lvertneqq', "\x{2268}", role=>'RELOP', | |
DefMath('\lnsim', "\x{22E6}", role=>'RELOP', | |
DefMath('\lnapprox', "\x{2A89}", role=>'RELOP', | |
DefMath('\nprec', "\x{2280}", role=>'RELOP', | |
DefMath('\npreceq', "\x{22E0}", role=>'RELOP', | |
DefMath('\precneqq', "\x{2AB5}", role=>'RELOP', | |
DefMath('\precnsim', "\x{22E8}", role=>'RELOP', | |
DefMath('\precnapprox', "\x{2AB9}", role=>'RELOP', | |
DefMath('\nsim', "\x{2241}", role=>'RELOP', | |
DefMath('\nshortmid', "\x{2224}", role=>'RELOP', | |
DefMath('\nmid', "\x{2224}", role=>'RELOP', | |
DefMath('\nvdash', "\x{22AC}", role=>'RELOP', | |
DefMath('\nVdash', "\x{22AE}", role=>'RELOP', | |
DefMath('\ntriangleleft', "\x{22EA}", role=>'RELOP', | |
DefMath('\ntrianglelefteq', "\x{22EC}", role=>'RELOP', | |
DefMath('\nsubseteq', "\x{2288}", role=>'RELOP', | |
DefMath('\nsubseteqq', "\x{2AC5}\x{0338}", role=>'RELOP', | |
DefMath('\subsetneq', "\x{228A}", role=>'RELOP', | |
DefMath('\varsubsetneq', "\x{228A}", role=>'RELOP', | |
DefMath('\subsetneqq', "\x{2ACB}", role=>'RELOP', | |
DefMath('\varsubsetneqq', "\x{2ACB}", role=>'RELOP', | |
DefMath('\supsetneq', "\x{228B}", role=>'RELOP', | |
DefMath('\varsupsetneq', "\x{228B}", role=>'RELOP', | |
DefMath('\supsetneqq', "\x{2ACC}", role=>'RELOP', | |
DefMath('\varsupsetneqq', "\x{2ACC}", role=>'RELOP', | |
DefMath('\ngtr', "\x{226F}", role=>'RELOP', | |
DefMath('\ngeq', "\x{2271}", role=>'RELOP', | |
DefMath('\ngeqslant', "\x{2A7E}\x{0338}", role=>'RELOP', | |
DefMath('\ngeqq', "\x{2267}\x{0338}", role=>'RELOP', | |
DefMath('\gneq', "\x{2A88}", role=>'RELOP', | |
DefMath('\gneqq', "\x{2269}", role=>'RELOP', | |
DefMath('\gvertneqq', "\x{2269}", role=>'RELOP', | |
DefMath('\gnsim', "\x{22E7}", role=>'RELOP', | |
DefMath('\gnapprox', "\x{2A8A}", role=>'RELOP', | |
DefMath('\nsucc', "\x{2281}", role=>'RELOP', | |
DefMath('\nsucceq', "\x{22E1}", role=>'RELOP', | |
DefMath('\succneqq', "\x{2AB6}", role=>'RELOP', | |
DefMath('\succnsim', "\x{22E9}", role=>'RELOP', | |
DefMath('\succnapprox', "\x{2ABA}", role=>'RELOP', | |
DefMath('\ncong', "\x{2247}", role=>'RELOP', | |
DefMath('\nshortparallel', "\x{2226}", role=>'RELOP', | |
DefMath('\nparallel', "\x{2226}", role=>'RELOP', | |
DefMath('\nvDash', "\x{22AD}", role=>'RELOP'); # NOT TRUE | |
DefMath('\nVDash', "\x{22AF}", role=>'RELOP'); # NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE | |
DefMath('\ntriangleright', "\x{22EB}", role=>'RELOP', | |
DefMath('\ntrianglerighteq', "\x{22ED}", role=>'RELOP', | |
DefMath('\nsupseteq', "\x{2289}", role=>'RELOP', | |
DefMath('\nsupseteqq', "\x{2AC6}\x{0338}", role=>'RELOP', | |
DefMath('\leftleftarrows', "\x{21C7}", role=>'ARROW'); # LEFTWARDS PAIRED ARROWS | |
DefMath('\leftrightarrows', "\x{21C6}", role=>'ARROW'); # LEFTWARDS ARROW OVER RIGHTWARDS ARROW | |
DefMath('\Lleftarrow', "\x{21DA}", role=>'ARROW'); # LEFTWARDS TRIPLE ARROW | |
DefMath('\twoheadleftarrow', "\x{219E}", role=>'ARROW'); # LEFTWARDS TWHO HEADED ARROW | |
DefMath('\leftarrowtail', "\x{21A2}", role=>'ARROW'); # LEFTWARDS ARROW WITH TAIL | |
DefMath('\looparrowleft', "\x{21AB}", role=>'ARROW'); # leftwards arrow with loop | |
DefMath('\leftrightharpoons', "\x{21CB}", role=>'ARROW'); # LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON | |
DefMath('\curvearrowleft', "\x{21B6}", role=>'ARROW'); # ANTICLOCKWISE TOP SEMICIRCLE ARROW | |
DefMath('\circlearrowleft', "\x{21BA}", role=>'ARROW'); # ANTICLOCKWISE OPEN CIRCLE ARROW | |
DefMath('\Lsh', "\x{21B0}", role=>'ARROW'); # UPWAARDS ARROW WITH TIP LEFTWARDS | |
DefMath('\upuparrows', "\x{21C8}", role=>'ARROW'); # UPWARDS PAIRED ARROWS | |
DefMath('\upharpoonleft', "\x{21BF}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB LEFTWARDS | |
DefMath('\rightrightarrows', "\x{21C9}", role=>'ARROW'); # RIGHTWARDS PAIRED ARROWS | |
DefMath('\rightleftarrows', "\x{21C4}", role=>'ARROW'); # RIGHTWARDS ARROW OVER LEFTWARD ARROW | |
DefMath('\Rrightarrow', "\x{21DB}", role=>'ARROW'); # RIGHTWARDS TRIPLE ARROW | |
DefMath('\twoheadrightarrow', "\x{21A0}", role=>'ARROW'); # RIGHTWARDS TWO HEADED ARROW | |
DefMath('\rightarrowtail', "\x{21A3}", role=>'ARROW'); # RIGHTWARDS ARROW WITH TAIL | |
DefMath('\looparrowright', "\x{21AC}", role=>'ARROW'); # RIGHTWARDS ARROW WITH LOOP | |
DefMath('\curvearrowright', "\x{21B7}", role=>'ARROW'); # CLOCKWISE TOP SEMICIRCLE ARROW | |
DefMath('\circlearrowright', "\x{21BB}", role=>'ARROW'); # CLOCKWISE OPEN CIRCLE ARROW | |
DefMath('\Rsh', "\x{21B1}", role=>'ARROW'); # UPWAARDS ARROW WITH TIP RIGHTWARDS | |
DefMath('\downdownarrows', "\x{21CA}", role=>'ARROW'); # DOWNWARDS PAIRED ARROWS | |
DefMath('\upharpoonright', "\x{21BE}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS | |
DefMath('\restriction', "\x{21BE}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS | |
DefMath('\downharpoonleft', "\x{21C3}", role=>'ARROW'); # DOWNWARDS HARPOON WITH BARB LEFTWARDS | |
DefMath('\multimap', "\x{22B8}", role=>'ARROW'); # MULTIMAP | |
DefMath('\leftrightsquigarrow', "\x{21AD}", role=>'ARROW'); # LEFT RIGHT WAVE ARROW | |
DefMath('\downharpoonright', "\x{21C2}", role=>'ARROW'); # DOWNWARDS HARPOON WITH BARB RIGHTWARDS | |
DefMath('\nleftarrow', "\x{219A}", role=>'ARROW'); # LEFTWARDS ARROW WITH STROKE | |
DefMath('\nLeftarrow', "\x{21CD}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE | |
DefMath('\nleftrightarrow', "\x{21AE}", role=>'ARROW'); # LEFT RIGHT ARROW WITH STROKE | |
DefMath('\nrightarrow', "\x{219B}", role=>'ARROW'); # RIGHTWARDS ARROW WITH STROKE | |
DefMath('\nRightarrow', "\x{21CF}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE | |
DefMath('\nLeftrightarrow', "\x{21CE}", role=>'ARROW'); # LEFT RIGHT DOUBLE ARROW WITH STROKE | |
DefMath('\injlim', "inj lim", | |
DefMath('\projlim', "proj lim", | |
DefMath('\varlimsup', '\overline{\lim}', | |
DefMath('\varliminf', '\underline{\lim}', | |
DefMath('\varinjlim', '\underrightarrow{\lim}', | |
DefMath('\varprojlim','\underleftarrow{\lim}', | |
DefMathI('\sgn', undef,"sgn", role=>'OPFUNCTION', meaning=>'sign'); | |
DefMathI('\Alpha', undef,"\x{0391}"); | |
DefMathI('\Beta', undef,"\x{0392}"); | |
DefMathI('\Epsilon' , undef,"\x{0395}"); | |
DefMathI('\Zeta', undef,"\x{0396}"); | |
DefMathI('\Eta', undef,"\x{0397}"); | |
DefMathI('\Iota', undef,"\x{0399}"); | |
DefMathI('\Kappa', undef,"\x{039A}"); | |
DefMathI('\Mu', undef,"\x{039C}"); | |
DefMathI('\Nu', undef,"\x{039D}"); | |
DefMathI('\Omicron', undef,"\x{039F}"); | |
DefMathI('\Rho', undef,"\x{03A1}"); | |
DefMathI('\Tau', undef,"\x{03A4}"); | |
DefMathI('\Chi', undef,"\x{03A7}"); | |
DefMathI('\Digamma', undef, "\x{03DC}"); # GREEK LETTER DIGAMMA | |
DefMathI('\digamma', undef, "\x{03DD}"); # GREEK SMALL LETTER DIGAMMA | |
DefMathI('\Coppa', undef, "\x{03D8}"); # GREEK LETTER ARCHAIC KOPPA | |
DefMathI('\coppa', undef, "\x{03D9}"); # GREEK SMALL LETTER ARCHAIC KOPPA | |
DefMathI('\varcoppa', undef, "\x{03D9}"); # GREEK SMALL LETTER ARCHAIC KOPPA | |
DefMathI('\Koppa', undef, "\x{03DE}"); # GREEK LETTER KOPPA | |
DefMathI('\koppa', undef, "\x{03DF}"); # GREEK SMALL LETTER KOPPA | |
DefMathI('\Stigma', undef, "\x{03DA}"); # GREEK LETTER STIGAM | |
DefMathI('\stigma', undef, "\x{03DB}"); # GREEK SMALL LETTER STIGMA | |
DefMathI('\varstigma',undef, "\x{03DB}"); # GREEK SMALL LETTER STIGMA | |
DefMathI('\Sampi', undef, "\x{03E0}"); # GREEK LETTER SAMPI | |
DefMathI('\sampi', undef, "\x{03E1}"); # GREEK SMALL LETTER SAMPI | |
DefMathI('\sen', undef,"sen", role=>'TRIGFUNCTION', meaning=>'sine'); | |
DefMath('\@fd', '\aas@@fstack{\fd}{d}', role=>'ID', meaning=>'day', alias=>'\fd'); | |
DefMath('\@fh', '\aas@@fstack{\fh}{h}', role=>'ID', meaning=>'hour', alias=>'\fh'); | |
DefMath('\@fm', '\aas@@fstack{\fm}{m}', role=>'ID', meaning=>'minute', alias=>'\fm'); | |
DefMath('\@fs', '\aas@@fstack{\fs}{s}', role=>'ID', meaning=>'second', alias=>'\fs'); | |
DefMath('\@fdg', '\aas@@fstack{\fdg}{\circ}', role=>'ID', meaning=>'degree', alias=>'\fdg'); | |
DefMath('\@farcm','\aas@@fstack{\farcm}{\prime}', role=>'ID', meaning=>'arcminute', alias=>'\farcm'); | |
DefMath('\@farcs','\aas@@fstack{\farcs}{\prime\prime}', role=>'ID', meaning=>'arcsecond', alias=>'\farcs'); | |
DefMath('\@fp', '\aas@@fstack{\fp}{p}'); | |
DefMath('\dddot{}', "\x{02D9}\x{02D9}\x{02D9}", operator_role=>'OVERACCENT'); # DOT ABOVE | |
DefMath('\ddddot{}',"\x{02D9}\x{02D9}\x{02D9}\x{02D9}", operator_role=>'OVERACCENT'); # DOT ABOVE | |
DefMath('\implies', "\x{27F9}", role=>'ARROW', meaning=>'implies'); | |
DefMath('\impliedby',"\x{27F8}", role=>'ARROW', meaning=>'implied-by'); | |
DefMath('\And','&', role=>'ADDOP', meaning=>'and'); | |
DefMath('\underrightarrow{}', "\x{2192}", operator_role=>'UNDERACCENT'); | |
DefMath('\underleftarrow{}', "\x{2190}", operator_role=>'UNDERACCENT'); | |
DefMath('\overleftrightarrow{}', "\x{2194}", operator_role=>'OVERACCENT'); | |
DefMath('\underleftrightarrow{}',"\x{2194}", operator_role=>'UNDERACCENT'); | |
DefMath('\lvert','|', role=>'OPEN'); | |
DefMath('\lVert',"\x{2225}", role=>'OPEN'); # PARALLEL TO | |
DefMath('\rvert','|', role=>'CLOSE'); | |
DefMath('\rVert',"\x{2225}", role=>'CLOSE'); # PARALLEL TO | |
DefMath('\mod', 'mod', role=>'MODIFIEROP', meaning=>'modulo'); | |
DefMath('\pod{}', '(#1)', role=>'MODIFIER', meaning=>'modulo'); # Well, sorta postfix.. | |
DefMath('\iint', "\x{222C}", meaning=>'double-integral', role=>'INTOP', | |
DefMath('\iiint',"\x{222D}", meaning=>'triple-integral', role=>'INTOP', | |
DefMath('\iiiint',"\x{2A0C}", meaning=>'quadruple-integral', role=>'INTOP', | |
DefMath('\idotsint',"\x{222B}\x{22EF}\x{222B}", meaning=>'multiple-integral', role=>'INTOP', | |
DefMath('\varGamma', "\x{0393}",font=>{shape=>'italic'}); | |
DefMath('\varSigma', "\x{03A3}",font=>{shape=>'italic'}); | |
DefMath('\varDelta', "\x{0394}",font=>{shape=>'italic'}); | |
DefMath('\varUpsilon', "\x{03A5}",font=>{shape=>'italic'}); | |
DefMath('\varTheta', "\x{0398}",font=>{shape=>'italic'}); | |
DefMath('\varPhi', "\x{03A6}",font=>{shape=>'italic'}); | |
DefMath('\varLambda', "\x{039B}",font=>{shape=>'italic'}); | |
DefMath('\varPsi', "\x{03A8}",font=>{shape=>'italic'}); | |
DefMath('\varXi', "\x{039E}",font=>{shape=>'italic'}); | |
DefMath('\varOmega', "\x{03A9}",font=>{shape=>'italic'}); | |
DefMath('\varPi', "\x{03A0}",font=>{shape=>'italic'}); | |
DefMath('\la', "\x{2272}", role=>'RELOP', meaning=>'less-than-or-similar-to'); | |
DefMath('\ga', "\x{2273}", role=>'RELOP', meaning=>'greater-than-or-similar-to'); | |
DefMath('\cor', "\x{2258}", role=>'RELOP', meaning=>'corresonds-to'); | |
DefMath('\sol', "\x{2A9D}", role=>'RELOP', meaning=>'similar-to-or-less-than'); | |
DefMath('\sog', "\x{2A9E}", role=>'RELOP', meaning=>'similar-to-or-greater-than'); | |
DefMath('\lse', "\x{2A8D}", role=>'RELOP', meaning=>'less-than-or-similar-to-or-equal'); | |
DefMath('\gse', "\x{2A8E}", role=>'RELOP', meaning=>'greater-than-or-similar-to-or-equal'); | |
DefMath('\leogr', "\x{2276}", role=>'RELOP', meaning=>'less-than-or-greater-than'); | |
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than'); | |
DefMath('\loa', "\x{2A85}", role=>'RELOP', meaning=>'less-than-or-approximately-equals'); | |
DefMath('\goa', "\x{2A86}", role=>'RELOP', meaning=>'greater-than-or-approximately-equals'); | |
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals'); | |
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals'); | |
DefMath('\getsto', "\x{21C6}", role=>'ARROW'); | |
DefMath('\leqslant', "\x{2A7D}", role=>'RELOP', | |
DefMath('\geqslant', "\x{2A7E}", role=>'RELOP', | |
DefMath('\Cset', "\x{2102}", role=>'ID', meaning=>'complexes'); # DOUBLE-STRUCK CAPITAL C | |
DefMath('\Hset', "\x{210D}", role=>'ID', meaning=>'upper-complexes'); # DOUBLE-STRUCK CAPITAL H | |
DefMath('\Nset', "\x{2115}", role=>'ID', meaning=>'numbers'); # DOUBLE-STRUCK CAPITAL N | |
DefMath('\Qset', "\x{211A}", role=>'ID', meaning=>'rationals'); # DOUBLE-STRUCK CAPITAL Q | |
DefMath('\Rset', "\x{211D}", role=>'ID', meaning=>'reals'); # DOUBLE-STRUCK CAPITAL R | |
DefMath('\Zset', "\x{2124}", role=>'ID', meaning=>'integers'); # DOUBLE-STRUCK CAPITAL Z | |
DefMath('\d', "\x{2146}", role=>'DIFFOP', meaning=>'differential-d'); | |
DefMath('\e', "\x{2147}", role=>'ID', meaning=>'exponential-e'); | |
DefMath('\pol Digested', "\x{2192}", operator_role=>'OVERACCENT'); # RIGHTWARDS ARROW | |
DefMath('\omicron', "\x{03BF}"); # GREEK SMALL LETTER OMICRON | |
DefMathI('\upalpha', undef,"\x{03B1}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upbeta', undef,"\x{03B2}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upgamma', undef,"\x{03B3}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\updelta', undef,"\x{03B4}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upepsilon' , undef,"\x{03F5}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upzeta', undef,"\x{03B6}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upeta', undef,"\x{03B7}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\uptheta', undef,"\x{03B8}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upiota', undef,"\x{03B9}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upkappa', undef,"\x{03BA}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\uplambda', undef,"\x{03BB}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upmu', undef,"\x{03BC}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upnu', undef,"\x{03BD}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upxi', undef,"\x{03BE}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\uppi', undef,"\x{03C0}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\uprho', undef,"\x{03C1}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upsigma', undef,"\x{03C3}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\uptau', undef,"\x{03C4}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upupsilon', undef,"\x{03C5}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upphi', undef,"\x{03D5}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upchi', undef,"\x{03C7}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\uppsi', undef,"\x{03C8}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upomega', undef,"\x{03C9}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upvarepsilon',undef,"\x{03B5}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upvartheta', undef,"\x{03D1}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upvarpi', undef,"\x{03D6}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\upvarphi', undef,"\x{03C6}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Upgamma', undef,"\x{0393}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Updelta', undef,"\x{0394}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Uptheta', undef,"\x{0398}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Uplambda', undef,"\x{039B}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Upxi', undef,"\x{039E}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Uppi', undef,"\x{03A0}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Upsigma', undef,"\x{03A3}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Upupsilon', undef,"\x{03A5}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Upphi', undef,"\x{03A6}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Uppsi', undef,"\x{03A8}", font=>{shape=>'upright',forceshape=>1}); | |
DefMathI('\Upomega', undef,"\x{03A9}", font=>{shape=>'upright',forceshape=>1}); | |
DefMath('\lambdabar',"\x{03BB}\x{0304}"); | |
DefMath('\gtrsim', "\x{2273}", role=>'RELOP', | |
DefMath('\lesssim', "\x{2272}", role=>'RELOP', | |
DefMath('\precsim', "\x{227E}", role=>'RELOP', | |
DefMath('\succsim', "\x{227F}", role=>'RELOP', | |
DefMath('\overcirc{}', "\x{030A}", operator_role=>'OVERACCENT'); # same as mathring | |
DefMath('\dddot{}', "\x{02D9}\x{02D9}\x{02D9}",operator_role=>'OVERACCENT'); # DOT ABOVE | |
DefMath('\triangleq', "\x{225C}", role=>'RELOP'); # DELTA EQUAL TO | |
DefMath('\loarrow{}', "\x{20D6}", operator_role=>'OVERACCENT'); | |
DefMath('\roarrow{}', "\x{20D7}", operator_role=>'OVERACCENT'); | |
DefMath('\overstar{}', "\x{0359}", operator_role=>'OVERACCENT'); | |
DefMath('\tensor{}', "\x{20E1}", operator_role=>'OVERACCENT'); | |
DefMathI('=',undef,'=', role=>'RELOP', meaning=>'equals'); | |
DefMathI('+',undef,'+', role=>'ADDOP', meaning=>'plus'); | |
DefMathI('-',undef,'-', role=>'ADDOP', meaning=>'minus'); | |
DefMathI('*',undef,'*', role=>'MULOP', meaning=>'times'); | |
DefMathI('/',undef,'/', role=>'MULOP', meaning=>'divide', mathstyle=>'inline'); | |
DefMathI('!',undef,'!', role=>'POSTFIX', meaning=>'factorial'); | |
DefMathI(',',undef,',', role=>'PUNCT'); | |
DefMathI('.',undef,'.', role=>'PERIOD'); | |
DefMathI(';',undef,';', role=>'PUNCT'); | |
DefMathI('(',undef,'(', role=>'OPEN'); DefMathI(')',undef,')', role=>'CLOSE'); | |
DefMathI('[',undef,'[', role=>'OPEN'); DefMathI(']',undef,']', role=>'CLOSE'); | |
DefMathI('|',undef,'|', role=>'VERTBAR'); | |
DefMathI(':',undef,':', role=>'METARELOP', name=>'colon'); # Seems like good default role | |
DefMathI('<',undef,'<', role=>'RELOP', meaning=>'less-than'); | |
DefMathI('>',undef,'>', role=>'RELOP', meaning=>'greater-than'); | |
DefMathI($digit,undef,$digit, role=>'NUMBER',meaning=>$digit); } | |
DefMathI('\alpha', undef,"\x{03B1}"); | |
DefMathI('\beta', undef,"\x{03B2}"); | |
DefMathI('\gamma', undef,"\x{03B3}"); | |
DefMathI('\delta', undef,"\x{03B4}"); | |
DefMathI('\epsilon' , undef,"\x{03F5}"); | |
DefMathI('\varepsilon',undef,"\x{03B5}"); | |
DefMathI('\zeta', undef,"\x{03B6}"); | |
DefMathI('\eta', undef,"\x{03B7}"); | |
DefMathI('\theta', undef,"\x{03B8}"); | |
DefMathI('\vartheta', undef,"\x{03D1}"); | |
DefMathI('\iota', undef,"\x{03B9}"); | |
DefMathI('\kappa', undef,"\x{03BA}"); | |
DefMathI('\lambda', undef,"\x{03BB}"); | |
DefMathI('\mu', undef,"\x{03BC}"); | |
DefMathI('\nu', undef,"\x{03BD}"); | |
DefMathI('\xi', undef,"\x{03BE}"); | |
DefMathI('\pi', undef,"\x{03C0}"); | |
DefMathI('\varpi', undef,"\x{03D6}"); | |
DefMathI('\rho', undef,"\x{03C1}"); | |
DefMathI('\varrho', undef,"\x{03F1}"); | |
DefMathI('\sigma', undef,"\x{03C3}"); | |
DefMathI('\varsigma', undef,"\x{03C2}"); | |
DefMathI('\tau', undef,"\x{03C4}"); | |
DefMathI('\upsilon', undef,"\x{03C5}"); | |
DefMathI('\phi', undef,"\x{03D5}"); | |
DefMathI('\varphi', undef,"\x{03C6}"); | |
DefMathI('\chi', undef,"\x{03C7}"); | |
DefMathI('\psi', undef,"\x{03C8}"); | |
DefMathI('\omega', undef,"\x{03C9}"); | |
DefMathI('\Gamma', undef,"\x{0393}"); | |
DefMathI('\Delta', undef,"\x{0394}"); | |
DefMathI('\Theta', undef,"\x{0398}"); | |
DefMathI('\Lambda', undef,"\x{039B}"); | |
DefMathI('\Xi', undef,"\x{039E}"); | |
DefMathI('\Pi', undef,"\x{03A0}"); | |
DefMathI('\Sigma', undef,"\x{03A3}"); | |
DefMathI('\Upsilon', undef,"\x{03A5}"); | |
DefMathI('\Phi', undef,"\x{03A6}"); | |
DefMathI('\Psi', undef,"\x{03A8}"); | |
DefMathI('\Omega', undef,"\x{03A9}"); | |
DefMathI('\aleph', undef,"\x{2135}"); | |
DefMathI('\hbar', undef,"\x{210F}", role=>'ID', meaning=>'Planck-constant-over-2-pi'); | |
DefMathI('\imath', undef,"\x{0131}"); | |
DefMathI('\jmath', undef,"\x{0237}"); | |
DefMathI('\ell', undef,"\x{2113}"); | |
DefMathI('\wp', undef,"\x{2118}", meaning=>'Weierstrass-p'); | |
DefMathI('\Re', undef,"\x{211C}", role=>'OPFUNCTION', meaning=>'real-part'); | |
DefMathI('\Im', undef,"\x{2111}", role=>'OPFUNCTION', meaning=>'imaginary-part'); | |
DefMathI('\mho', undef,"\x{2127}"); | |
DefMathI('\prime', undef,"\x{2032}", role=>'SUPOP', locked=>1); | |
DefMathI('\emptyset', undef,"\x{2205}", role=>'ID', meaning=>'empty-set'); | |
DefMathI('\nabla', undef,"\x{2207}", role=>'OPERATOR'); | |
DefMathI('\surd', undef,"\x{221A}", role=>'OPERATOR', meaning=>'square-root'); | |
DefMathI('\top', undef,"\x{22A4}", role=>'ADDOP', meaning=>'top'); | |
DefMathI('\bot', undef,"\x{22A5}", role=>'ADDOP', meaning=>'bottom'); | |
DefMathI('\|', undef,"\x{2225}", role=>'VERTBAR', name=>'||', meaning=>'parallel-to'); | |
DefMathI('\angle', undef,"\x{2220}"); | |
DefMathI('\forall', undef,"\x{2200}", role=>'BIGOP', meaning=>'for-all'); | |
DefMathI('\exists', undef,"\x{2203}", role=>'BIGOP', meaning=>'exists'); | |
DefMathI('\neg', undef,UTF(0xAC), role=>'FUNCTION', meaning=>'not'); | |
DefMathI('\lnot', undef,UTF(0xAC), role=>'FUNCTION', meaning=>'not'); | |
DefMathI('\flat', undef,"\x{266D}"); | |
DefMathI('\natural', undef,"\x{266E}"); | |
DefMathI('\sharp', undef,"\x{266F}"); | |
DefMathI('\backslash',undef,UTF(0x5C), role=>'MULOP'); | |
DefMathI('\partial', undef,"\x{2202}", role=>'OPERATOR', meaning=>'partial-differential'); | |
DefMathI('\infty', undef,"\x{221E}", role=>'ID', meaning=>'infinity'); | |
DefMathI('\Box', undef,"\x{25A1}"); | |
DefMathI('\Diamond', undef,"\x{25C7}"); | |
DefMathI('\triangle', undef,"\x{25B3}"); | |
DefMathI('\clubsuit', undef,"\x{2663}"); | |
DefMathI('\diamondsuit',undef,"\x{2662}"); | |
DefMathI('\heartsuit',undef,"\x{2661}"); | |
DefMathI('\spadesuit',undef,"\x{2660}"); | |
DefMath('\smallint',"\x{222B}", meaning=>'integral', role=>'INTOP', | |
DefMathI('\sum', undef,"\x{2211}", role=>'SUMOP', | |
DefMathI('\prod', undef,"\x{220F}", role=>'SUMOP', | |
DefMathI('\coprod', undef,"\x{2210}", role=>'SUMOP', | |
DefMathI('\int', undef,"\x{222B}", role=>'INTOP', | |
DefMathI('\oint', undef,"\x{222E}", role=>'INTOP', | |
DefMathI('\bigcap', undef,"\x{22C2}", role=>'SUMOP', | |
DefMathI('\bigcup', undef,"\x{22C3}", role=>'SUMOP', | |
DefMathI('\bigsqcup', undef,"\x{2294}", role=>'SUMOP', | |
DefMathI('\bigvee', undef,"\x{22C1}", role=>'SUMOP', | |
DefMathI('\bigwedge', undef,"\x{22C0}", role=>'SUMOP', | |
DefMathI('\bigodot', undef,"\x{2299}", role=>'SUMOP', | |
DefMathI('\bigotimes',undef,"\x{2297}", role=>'SUMOP', | |
DefMathI('\bigoplus', undef,"\x{2295}", role=>'SUMOP', | |
DefMathI('\biguplus', undef,"\x{228C}", role=>'SUMOP', | |
DefMathI('\pm', undef,UTF(0xB1), role=>'ADDOP', meaning=>'plus-or-minus'); | |
DefMathI('\mp', undef,"\x{2213}", role=>'ADDOP', meaning=>'minus-or-plus'); | |
DefMathI('\times', undef,UTF(0xD7), role=>'MULOP', meaning=>'times'); | |
DefMathI('\div', undef,UTF(0xF7), role=>'MULOP', meaning=>'divide'); | |
DefMathI('\ast', undef,"\x{2217}", role=>'MULOP'); | |
DefMathI('\star', undef,"\x{22C6}", role=>'MULOP'); | |
DefMathI('\circ', undef,"\x{2218}", role=>'MULOP', meaning=>'compose'); | |
DefMathI('\bullet', undef,"\x{2219}", role=>'MULOP'); | |
DefMathI('\cdot', undef,"\x{22C5}", role=>'MULOP'); | |
DefMathI('\cap', undef,"\x{2229}", role=>'ADDOP', meaning=>'intersection'); | |
DefMathI('\cup', undef,"\x{222A}", role=>'ADDOP', meaning=>'union'); | |
DefMathI('\uplus', undef,"\x{228C}", role=>'ADDOP'); | |
DefMathI('\sqcap', undef,"\x{2293}", role=>'ADDOP', meaning=>'square-intersection'); | |
DefMathI('\sqcup', undef,"\x{2294}", role=>'ADDOP', meaning=>'square-union'); | |
DefMathI('\vee', undef,"\x{2228}", role=>'ADDOP', meaning=>'or'); | |
DefMathI('\lor', undef,"\x{2228}", role=>'ADDOP', meaning=>'or'); | |
DefMathI('\wedge', undef,"\x{2227}", role=>'ADDOP', meaning=>'and'); | |
DefMathI('\land', undef,"\x{2227}", role=>'ADDOP', meaning=>'and'); | |
DefMathI('\setminus', undef,"\x{2216}", role=>'ADDOP', meaning=>'set-minus'); | |
DefMathI('\wr', undef,"\x{2240}", role=>'MULOP'); | |
DefMathI('\diamond', undef,"\x{22C4}", role=>'ADDOP'); | |
DefMathI('\bigtriangleup', undef,"\x{25B3}", role=>'ADDOP'); | |
DefMathI('\bigtriangledown',undef,"\x{25BD}", role=>'ADDOP'); | |
DefMathI('\triangleleft', undef,"\x{25C1}", role=>'ADDOP'); | |
DefMathI('\triangleright', undef,"\x{25B7}", role=>'ADDOP'); | |
DefMathI('\lhd', undef,"\x{22B2}", role=>'ADDOP', meaning=>'subgroup-of'); | |
DefMathI('\rhd', undef,"\x{22B3}", role=>'ADDOP', meaning=>'contains-as-subgroup'); | |
DefMathI('\unlhd', undef,"\x{22B4}", role=>'ADDOP', meaning=>'subgroup-of-or-equals'); | |
DefMathI('\unrhd', undef,"\x{22B5}", role=>'ADDOP', meaning=>'contains-as-subgroup-or-equals'); | |
DefMathI('\oplus', undef,"\x{2295}", role=>'ADDOP', meaning=>'direct-sum'); | |
DefMathI('\ominus', undef,"\x{2296}", role=>'ADDOP', meaning=>'symmetric-difference'); | |
DefMathI('\otimes', undef,"\x{2297}", role=>'MULOP', meaning=>'tensor-product'); | |
DefMathI('\oslash', undef,"\x{2298}", role=>'MULOP'); | |
DefMathI('\odot', undef,"\x{2299}", role=>'MULOP', meaning=>'direct-product'); | |
DefMathI('\bigcirc', undef,"\x{25CB}", role=>'MULOP'); | |
DefMathI('\dagger', undef,"\x{2020}", role=>'MULOP'); | |
DefMathI('\ddagger', undef,"\x{2021}", role=>'MULOP'); | |
DefMathI('\amalg', undef,"\x{2210}", role=>'MULOP', meaning=>'coproduct'); | |
DefMathI('\leq', undef,"\x{2264}", role=>'RELOP', meaning=>'less-than-or-equals'); | |
DefMathI('\prec', undef,"\x{227A}", role=>'RELOP', meaning=>'precedes'); | |
DefMathI('\preceq', undef,"\x{2AAF}", role=>'RELOP', meaning=>'precedes-or-equals'); | |
DefMathI('\ll', undef,"\x{226A}", role=>'RELOP', meaning=>'much-less-than'); | |
DefMathI('\subset', undef,"\x{2282}", role=>'RELOP', meaning=>'subset-of'); | |
DefMathI('\subseteq', undef,"\x{2286}", role=>'RELOP', meaning=>'subset-of-or-equals'); | |
DefMathI('\sqsubset', undef,"\x{228F}", role=>'RELOP', meaning=>'square-image-of'); | |
DefMathI('\sqsubseteq',undef,"\x{2291}", role=>'RELOP', meaning=>'square-image-of-or-equals'); | |
DefMathI('\in', undef,"\x{2208}", role=>'RELOP', meaning=>'element-of'); | |
DefMathI('\vdash', undef,"\x{22A2}", role=>'METARELOP', meaning=>'proves'); | |
DefMathI('\geq', undef,"\x{2265}", role=>'RELOP', meaning=>'greater-than-or-equals'); | |
DefMathI('\succ', undef,"\x{227B}", role=>'RELOP', meaning=>'succeeds'); | |
DefMathI('\succeq', undef,"\x{2AB0}", role=>'RELOP', meaning=>'succeeds-or-equals'); | |
DefMathI('\gg', undef,"\x{226B}", role=>'RELOP', meaning=>'much-greater-than'); | |
DefMathI('\supset', undef,"\x{2283}", role=>'RELOP', meaning=>'superset-of'); | |
DefMathI('\supseteq', undef,"\x{2287}", role=>'RELOP', meaning=>'superset-of-or-equals'); | |
DefMathI('\sqsupset', undef,"\x{2290}", role=>'RELOP', meaning=>'square-original-of'); | |
DefMathI('\sqsupseteq',undef,"\x{2292}", role=>'RELOP', meaning=>'square-original-of-or-equals'); | |
DefMathI('\ni', undef,"\x{220B}", role=>'RELOP', meaning=>'contains'); | |
DefMathI('\dashv', undef,"\x{22A3}", role=>'METARELOP', meaning=>'does-not-prove'); | |
DefMathI('\equiv', undef,"\x{2261}", role=>'RELOP', meaning=>'equivalent-to'); | |
DefMathI('\sim', undef,"\x{223C}", role=>'RELOP', meaning=>'similar-to'); | |
DefMathI('\simeq', undef,"\x{2243}", role=>'RELOP', meaning=>'similar-to-or-equals'); | |
DefMathI('\asymp', undef,"\x{224D}", role=>'RELOP', meaning=>'asymptotically-equals'); | |
DefMathI('\approx', undef,"\x{2248}", role=>'RELOP', meaning=>'approximately-equals'); | |
DefMathI('\cong', undef,"\x{2245}", role=>'RELOP', meaning=>'approximately-equals'); | |
DefMathI('\neq', undef,"\x{2260}", role=>'RELOP', meaning=>'not-equals'); | |
DefMathI('\doteq', undef,"\x{2250}", role=>'RELOP', meaning=>'approaches-limit'); | |
DefMathI('\notin', undef,"\x{2209}", role=>'RELOP', meaning=>'not-element-of'); | |
DefMathI('\models', undef,"\x{22A7}", role=>'RELOP', meaning=>'models'); | |
DefMathI('\perp', undef,"\x{27C2}", role=>'RELOP', meaning=>'perpendicular-to'); | |
DefMathI('\mid', undef,"\x{2223}", role=>'VERTBAR'); # DIVIDES (RELOP?) ?? well, sometimes... | |
DefMathI('\parallel', undef,"\x{2225}", role=>'VERTBAR', meaning=>'parallel-to'); | |
DefMathI('\bowtie', undef,"\x{22C8}", role=>'RELOP'); # BOWTIE | |
DefMathI('\Join', undef,"\x{2A1D}", role=>'RELOP', meaning=>'join'); | |
DefMathI('\smile', undef,"\x{2323}", role=>'RELOP'); # SMILE | |
DefMathI('\frown', undef,"\x{2322}", role=>'RELOP'); # FROWN | |
DefMathI('\propto', undef,"\x{221D}", role=>'RELOP', meaning=>'proportional-to'); | |
DefMathI('\not',undef,"\x{FF0F}", role=>'OPFUNCTION', meaning=>'not'); | |
DefMathI('\relbar',undef, "-", role=>'RELOP'); # ??? | |
DefMathI('\Relbar',undef, "=", role=>'RELOP'); # ??? | |
DefMathI('\leftarrow', undef,"\x{2190}", role=>'ARROW'); # LEFTWARDS ARROW | |
DefMathI('\Leftarrow', undef,"\x{21D0}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW | |
DefMathI('\rightarrow', undef,"\x{2192}", role=>'ARROW'); # RIGHTWARDS ARROW | |
DefMathI('\Rightarrow', undef,"\x{21D2}", role=>'ARROW'); # RIGHTWARDS DOUBLE ARROW | |
DefMathI('\leftrightarrow', undef,"\x{2194}", role=>'METARELOP'); # LEFT RIGHT ARROW | |
DefMathI('\Leftrightarrow', undef,"\x{21D4}", role=>'METARELOP'); # LEFT RIGHT DOUBLE ARROW | |
DefMathI('\iff', undef,"\x{21D4}", role=>'METARELOP', meaning=>'iff'); # LEFT RIGHT DOUBLE ARROW | |
DefMathI('\mapsto', undef,"\x{21A6}", role=>'ARROW', meaning=>'maps-to'); | |
DefMathI('\hookleftarrow', undef,"\x{21A9}", role=>'ARROW'); # LEFTWARDS ARROW WITH HOOK | |
DefMathI('\leftharpoonup', undef,"\x{21BC}", role=>'ARROW'); # LEFTWARDS HARPOON WITH BARB UPWARDS | |
DefMathI('\leftharpoondown', undef,"\x{21BD}", role=>'ARROW'); # LEFTWARDS HARPOON WITH BARB DOWNWARDS | |
DefMathI('\rightleftharpoons', undef,"\x{21CC}", role=>'METARELOP'); # RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON | |
DefMathI('\longleftarrow', undef,"\x{27F5}", role=>'ARROW'); # LONG LEFTWARDS ARROW | |
DefMathI('\Longleftarrow', undef,"\x{27F8}", role=>'ARROW'); # LONG LEFTWARDS DOUBLE ARROW | |
DefMathI('\longrightarrow', undef,"\x{27F6}", role=>'ARROW'); # LONG RIGHTWARDS ARROW | |
DefMathI('\Longrightarrow', undef,"\x{27F9}", role=>'ARROW'); # LONG RIGHTWARDS DOUBLE ARROW | |
DefMathI('\longleftrightarrow',undef,"\x{27F7}", role=>'METARELOP'); # LONG LEFT RIGHT ARROW | |
DefMathI('\Longleftrightarrow',undef,"\x{27FA}", role=>'METARELOP'); # LONG LEFT RIGHT DOUBLE ARROW | |
DefMathI('\longmapsto', undef,"\x{27FC}", role=>'ARROW'); # LONG RIGHTWARDS ARROW FROM BAR | |
DefMathI('\hookrightarrow', undef,"\x{21AA}", role=>'ARROW'); # RIGHTWARDS ARROW WITH HOOK | |
DefMathI('\rightharpoonup', undef,"\x{21C0}", role=>'ARROW'); # RIGHTWARDS HARPOON WITH BARB UPWARDS | |
DefMathI('\rightharpoondown', undef,"\x{21C1}", role=>'ARROW'); # RIGHTWARDS HARPOON WITH BARB DOWNWARDS | |
DefMathI('\leadsto', undef,"\x{219D}", role=>'ARROW', meaning=>'leads-to'); | |
DefMathI('\uparrow', undef,"\x{2191}", role=>'ARROW'); # UPWARDS ARROW | |
DefMathI('\Uparrow', undef,"\x{21D1}", role=>'ARROW'); # UPWARDS DOUBLE ARROW | |
DefMathI('\downarrow', undef,"\x{2193}", role=>'ARROW'); # DOWNWARDS ARROW | |
DefMathI('\Downarrow', undef,"\x{21D3}", role=>'ARROW'); # DOWNWARDS DOUBLE ARROW | |
DefMathI('\updownarrow', undef,"\x{2195}", role=>'ARROW'); # UP DOWN ARROW | |
DefMathI('\Updownarrow', undef,"\x{21D5}", role=>'ARROW'); # UP DOWN DOUBLE ARROW | |
DefMathI('\nearrow', undef,"\x{2197}", role=>'ARROW'); # NORTH EAST ARROW | |
DefMathI('\searrow', undef,"\x{2198}", role=>'ARROW'); # SOUTH EAST ARROW | |
DefMathI('\swarrow', undef,"\x{2199}", role=>'ARROW'); # SOUTH WEST ARROW | |
DefMathI('\nwarrow', undef,"\x{2196}", role=>'ARROW'); # NORTH WEST ARROW | |
DefMathI('\mapstochar', undef,"\x{2E20}"); # TeX 3237 | |
DefMathI('\lhook', undef,"\x{2E26}"); # TeX 312C | |
DefMathI('\rhook', undef,"\x{2E27}"); # TeX 312D | |
DefMathI('\cdots',undef,"\x{22EF}", role=>'ID'); # MIDLINE HORIZONTAL ELLIPSIS | |
DefMathI('\ddots',undef,"\x{22F1}", role=>'ID'); # DOWN RIGHT DIAGONAL ELLIPSIS | |
DefMathI('\colon',undef,':', role=>'METARELOP'); # Seems like good default role | |
properties=>{font=>sub{ LookupValue('font')->merge(family=>'serif');}} ); # Since not DefMath! | |
DefMath('\hat Digested', UTF(0x5E), operator_role=>'OVERACCENT'); | |
DefMath('\check Digested', "\x{02C7}", operator_role=>'OVERACCENT'); # CARON | |
DefMath('\breve Digested', "\x{02D8}", operator_role=>'OVERACCENT'); # BREVE | |
DefMath('\acute Digested', UTF(0xB4), operator_role=>'OVERACCENT'); # ACUTE ACCENT | |
DefMath('\grave Digested', UTF(0x60), operator_role=>'OVERACCENT'); # GRAVE ACCENT | |
DefMath('\tilde Digested', UTF(0x7E), operator_role=>'OVERACCENT'); # TILDE | |
DefMath('\bar Digested', UTF(0xAF), operator_role=>'OVERACCENT'); # MACRON | |
DefMath('\vec Digested', "\x{2192}", operator_role=>'OVERACCENT'); # RIGHTWARDS ARROW | |
DefMath('\dot Digested', "\x{02D9}", operator_role=>'OVERACCENT'); # DOT ABOVE | |
DefMath('\ddot Digested', UTF(0xA8), operator_role=>'OVERACCENT'); # DIAERESIS | |
DefMath('\overline Digested', UTF(0xAF), operator_role=>'OVERACCENT'); # MACRON | |
DefMath('\overbrace Digested', "\x{FE37}", operator_role=>'OVERACCENT', # PRESENTATION FORM FOR VERTICAL LEFT CURLY BRACKET | |
DefMath('\widehat Digested', UTF(0x5E), operator_role=>'OVERACCENT'); # CIRCUMFLEX ACCENT [plain? also amsfonts] | |
DefMath('\widetilde Digested', UTF(0x7E), operator_role=>'OVERACCENT'); # TILDE [plain? also amsfonts] | |
DefMath('\underbrace Digested',"\x{FE38}", operator_role=>'UNDERACCENT', # PRESENTATION FORM FOR VERTICAL RIGHT CURLY BRACKET | |
DefMath('\math@underline{}', UTF(0xAF), operator_role=>'UNDERACCENT', | |
DefMath('\math@overrightarrow{}', "\x{2192}", operator_role=>'OVERACCENT', | |
DefMath('\math@overleftarrow{}', "\x{2190}", operator_role=>'OVERACCENT', | |
properties=>{font=>sub{ LookupValue('font')->specialize("{");}}); # Since not DefMath! | |
properties=>{font=>sub{ LookupValue('font')->specialize("}");}}); # Since not DefMath! | |
DefMathI('\lceil', undef,"\x{2308}", role=>'OPEN'); # LEFT CEILING | |
DefMathI('\rceil', undef,"\x{2309}", role=>'CLOSE'); # RIGHT CEILING | |
DefMathI('\lfloor', undef,"\x{230A}", role=>'OPEN'); # LEFT FLOOR | |
DefMathI('\rfloor', undef,"\x{230B}", role=>'CLOSE'); # RIGHT FLOOR | |
DefMathI('\langle', undef,"\x{27E8}", role=>'OPEN'); # LEFT-POINTING ANGLE BRACKET | |
DefMathI('\rangle', undef,"\x{27E9}", role=>'CLOSE'); # RIGHT-POINTING ANGLE BRACKET | |
DefMathI('\lgroup', undef,"(", font=>{series=>'bold'}, role=>'OPEN'); | |
DefMathI('\rgroup', undef,")", font=>{series=>'bold'}, role=>'CLOSE'); | |
DefMathI('\bracevert', undef, "|", font=>{series=>'bold'}, role=>'VERTBAR'); | |
DefMathI('\arccos', undef,"arccos", role=>'OPFUNCTION', meaning=>'inverse-cosine'); | |
DefMathI('\arcsin', undef,"arcsin", role=>'OPFUNCTION', meaning=>'inverse-sine'); | |
DefMathI('\arctan', undef,"arctan", role=>'OPFUNCTION', meaning=>'inverse-tangent'); | |
DefMathI('\arg', undef,"arg", role=>'OPFUNCTION', meaning=>'argument'); | |
DefMathI('\cos', undef,"cos", role=>'TRIGFUNCTION', meaning=>'cosine'); | |
DefMathI('\cosh', undef,"cosh", role=>'TRIGFUNCTION', meaning=>'hyperbolic-cosine'); | |
DefMathI('\cot', undef,"cot", role=>'TRIGFUNCTION', meaning=>'cotangent'); | |
DefMathI('\coth', undef,"coth", role=>'TRIGFUNCTION', meaning=>'hyperbolic-cotangent'); | |
DefMathI('\csc', undef,"csc", role=>'TRIGFUNCTION', meaning=>'cosecant'); | |
DefMathI('\deg', undef,"deg", role=>'OPFUNCTION', meaning=>'degree'); | |
DefMathI('\det', undef,"det", role=>'LIMITOP', meaning=>'determinant', | |
DefMathI('\dim', undef,"dim", role=>'LIMITOP', meaning=>'dimension'); | |
DefMathI('\exp', undef,"exp", role=>'OPFUNCTION', meaning=>'exponential'); | |
DefMathI('\gcd', undef,"gcd", role=>'OPFUNCTION', meaning=>'gcd', | |
DefMathI('\hom', undef,"hom", role=>'OPFUNCTION'); | |
DefMathI('\inf', undef,"inf", role=>'LIMITOP', meaning=>'infimum', | |
DefMathI('\ker', undef,"ker", role=>'OPFUNCTION', meaning=>'kernel'); | |
DefMathI('\lg', undef,"lg", role=>'OPFUNCTION'); | |
DefMathI('\lim', undef,"lim", role=>'LIMITOP', meaning=>'limit', | |
DefMathI('\liminf', undef,"lim inf", role=>'LIMITOP', meaning=>'limit-infimum', | |
DefMathI('\limsup', undef,"lim sup", role=>'LIMITOP', meaning=>'limit-supremum', | |
DefMathI('\ln', undef,"ln", role=>'OPFUNCTION', meaning=>'natural-logarithm'); | |
DefMathI('\log', undef,"log", role=>'OPFUNCTION', meaning=>'logarithm'); | |
DefMathI('\max', undef,"max", role=>'LIMITOP', meaning=>'maximum', | |
DefMathI('\min', undef,"min", role=>'LIMITOP', meaning=>'minimum', | |
DefMathI('\Pr', undef,"Pr", role=>'OPFUNCTION', scriptpos=>\&doScriptpos); | |
DefMathI('\sec', undef,"sec", role=>'TRIGFUNCTION', meaning=>'secant'); | |
DefMathI('\sin', undef,"sin", role=>'TRIGFUNCTION', meaning=>'sine'); | |
DefMathI('\sinh', undef,"sinh", role=>'TRIGFUNCTION', meaning=>'hyperbolic-sine'); | |
DefMathI('\sup', undef,"sup", role=>'LIMITOP', meaning=>'supremum', | |
DefMathI('\tan', undef,"tan", role=>'TRIGFUNCTION', meaning=>'tangent'); | |
DefMathI('\tanh', undef,"tanh", role=>'TRIGFUNCTION', meaning=>'hyperbolic-tangent'); | |
DefMath('\pmod{}', '\;\;(\mathop{{\rm mod}} #1)', role=>'MODIFIER'); # , meaning=>'modulo'); | |
DefMath('\bmod', 'mod', role=>'MODIFIEROP', meaning=>'modulo'); | |
DefMathI('\*',undef,"\x{2062}", role=>'MULOP', name=>'', meaning=>'times'); # INVISIBLE TIMES (or MULTIPLICATION SIGN = 00D7) | |
DefMathI('\to',undef,"\x{2192}", role=>'ARROW'); # RIGHTWARDS ARROW??? a bit more explicitly relation-like? | |
DefMathI('\@APPLYFUNCTION', undef, "\x{2061}", reversion=>'', name=>'', role=>'APPLYOP'); | |
DefMathI('\@INVISIBLETIMES',undef, "\x{2062}", reversion=>'', name=>'', meaning=>'times', role=>'MULOP'); | |
DefMathI('\@INVISIBLECOMMA',undef, "\x{2063}", reversion=>'', name=>'', role=>'PUNCT'); | |
DefMath('\mathsterling',UTF(0xA3)); # POUND SIGN | |
DefMath('\@cd@equals@', "=", role=>'ARROW', font=>{size=>'stretchy'}, reversion=>'@='); | |
DefMath('\@cd@bar@', "|", role=>'ARROW',font=>{size=>'Big'}, reversion=>'@|'); | |
DefMath('\@cd@vert@', "\x{2225}", role=>'ARROW',font=>{size=>'Big'}, reversion=>'@\vert'); | |
DefMath('\leftarrowfill@', "\x{2190}", role=>'ARROW', font=>{size=>'stretchy'}); | |
DefMath('\rightarrowfill@', "\x{2192}", role=>'ARROW', font=>{size=>'stretchy'}); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment