Skip to content

Instantly share code, notes, and snippets.

@dginev
Created September 1, 2013 19:55
Show Gist options
  • Save dginev/6406905 to your computer and use it in GitHub Desktop.
Save dginev/6406905 to your computer and use it in GitHub Desktop.
LaTeXML's DefMath Lexicon
DefMath('\mathring{}', "\x{030A}", operator_role=>'OVERACCENT');
DefMathI('\arrowvert', undef, "|", role=>'VERTBAR');
DefMathI('\Arrowvert', undef, "\x{2225}",role=>'VERTBAR');
DefMathI('\cdotp', undef,"\x{22C5}", role=>'MULOP');
DefMathI('\ldotp', undef,".", role=>'MULOP');
DefMathI('\intop', undef,"\x{222B}", role=>'INTOP', meaning=>'integral',
DefMathI('\ointop', undef,"\x{222E}", role=>'INTOP', meaning=>'contour-integral',
DefMathI('\mapstochar', undef,"\x{21A6}", role=>'ARROW', meaning=>'maps-to');
DefMathI('\owns', undef,"\x{220B}", role=>'RELOP', meaning=>'contains');
DefMath('\circledbar', "\x{29B6}");
DefMath('\circledbslash', "\x{29B8}");
DefMath('\circledvee', "\x{2228}\x{20DD}"); # overlay circle?
DefMath('\circledwedge', "\x{2227}\x{20DD}"); # overlay cirxle?
DefMath('\invamp', "\x{214B}");
DefMath('\boxast', "\x{29C6}");
DefMath('\boxbar', "\x{25EB}"); # ?
DefMath('\boxbslash', "\x{29C4}");
DefMath('\boxslash', "\x{29C5}");
DefMath('\circleddot', "\x{2299}");
DefMath('\circledminus', "\x{2296}");
DefMath('\circledplus', "\x{2295}");
DefMath('\circledslash', "\x{2298}");
DefMath('\circledtimes', "\x{2297}");
DefMath('\fint', "\x{2A0F}", meaning=>'integral', role=>'INTOP',
DefMath('\fintop', "\x{2A0F}", meaning=>'integral', role=>'INTOP',
DefMath('\idotsint', "\x{222B}\x{22EF}\x{222B}", meaning=>'multiple-integral', role=>'INTOP',
DefMath('\idotsintop', "\x{222B}\x{22EF}\x{222B}", meaning=>'multiple-integral', role=>'INTOP',
DefMath('\iint', "\x{222C}", meaning=>'double-integral', role=>'INTOP',
DefMath('\iintop', "\x{222C}", meaning=>'double-integral', role=>'INTOP',
DefMath('\iiint', "\x{222D}", meaning=>'triple-integral', role=>'INTOP',
DefMath('\iiintop', "\x{222D}", meaning=>'triple-integral', role=>'INTOP',
DefMath('\iiiint', "\x{2A0C}", meaning=>'quadruple-integral', role=>'INTOP',
DefMath('\iiiintop', "\x{2A0C}", meaning=>'quadruple-integral', role=>'INTOP',
DefMath('\oiiintclockwise', "\x{222D}\x{20D9}",
DefMath('\oiiintclockwiseop', "\x{222D}\x{20D9}",
DefMath('\varoiiintclockwise', "\x{222D}\x{20D9}",
DefMath('\varoiiintclockwiseop', "\x{222D}\x{20D9}",
DefMath('\oiiintctrclockwise', "\x{222D}\x{20DA}",
DefMath('\oiiintctrclockwiseop', "\x{222D}\x{20DA}",
DefMath('\varoiiintctrclockwise', "\x{222D}\x{20DA}",
DefMath('\varoiiintctrclockwiseop', "\x{222D}\x{20DA}",
DefMath('\oiiint', "\x{2230}",
DefMath('\oiiintop', "\x{2230}",
DefMath('\oiintclockwise', "\x{222C}\x{20D9}",
DefMath('\oiintclockwiseop', "\x{222C}\x{20D9}",
DefMath('\varoiintclockwise', "\x{222C}\x{20D9}",
DefMath('\varoiintclockwiseop', "\x{222C}\x{20D9}",
DefMath('\oiintctrclockwise', "\x{222C}\x{20DA}",
DefMath('\oiintctrclockwiseop', "\x{222C}\x{20DA}",
DefMath('\varoiintctrclockwise', "\x{222C}\x{20DA}",
DefMath('\varoiintctrclockwiseop', "\x{222C}\x{20DA}",
DefMath('\oiint', "\x{222F}", meaning=>'double-contour-integral', role=>'INTOP',
DefMath('\oiintop', "\x{222F}", meaning=>'double-contour-integral', role=>'INTOP',
DefMath('\ointclockwise', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP',
DefMath('\ointclockwiseop', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP',
DefMath('\ointctrclockwise', "\x{2233}", meaning=>'counter-clockwise-contour-integral',
DefMath('\ointctrclockwiseop', "\x{2233}", meaning=>'counter-clockwise-contour-integral', role=>'INTOP',
DefMath('\varointclockwise', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP',
DefMath('\varointclockwiseop', "\x{2232}", meaning=>'clockwise-contour-integral', role=>'INTOP',
DefMath('\varointctrclockwise', "\x{2233}", meaning=>'counter-clockwise-contour-integral',
DefMath('\varointctrclockwiseop',"\x{2233}", meaning=>'counter-clockwise-contour-integral',
DefMath('\sqint', "\x{2A16}",role=>'INTOP', meaning=>'square-contour-integral',
DefMath('\boxdotleft', "\x{2190}\x{22A1}", role=>'RELOP');
DefMath('\boxdotLeft', "\x{21D0}\x{22A1}", role=>'RELOP');
DefMath('\boxdotright', "\x{22A1}\x{2192}", role=>'RELOP');
DefMath('\boxdotRight', "\x{22A1}\x{21D2}", role=>'RELOP');
DefMath('\boxleft', "\x{2190}\x{25A1}", role=>'RELOP');
DefMath('\boxLeft', "\x{21D0}\x{25A1}", role=>'RELOP');
DefMath('\boxright', "\x{25A1}\x{2192}", role=>'RELOP');
DefMath('\boxRight', "\x{25A1}\x{21D2}", role=>'RELOP');
DefMath('\circleddotleft', "\x{2190}\x{2299}", role=>'RELOP');
DefMath('\circleddotright', "\x{2299}\x{2192}", role=>'RELOP');
DefMath('\circledgtr', "\x{29C1}", role=>'RELOP');
DefMath('\circledless', "\x{29C0}", role=>'RELOP');
DefMath('\circleleft', "\x{2190}\x{25CB}", role=>'RELOP');
DefMath('\circleright', "\x{25CB}\x{2192}", role=>'RELOP');
DefMath('\colonapprox', ":\x{2248}", role=>'RELOP');
DefMath('\Colonapprox', "::\x{2248}", role=>'RELOP');
DefMath('\coloneq', ":-", role=>'RELOP');
DefMath('\Coloneq', "::-", role=>'RELOP');
DefMath('\coloneqq', "\x{2254}", role=>'RELOP');
DefMath('\Coloneqq', "\x{2A74}", role=>'RELOP');
DefMath('\colonsim', ":\x{223C}", role=>'RELOP');
DefMath('\Colonsim', "::\x{223C}", role=>'RELOP');
DefMath('\Diamonddotleft', "\x{2190}\x{27D0}", role=>'RELOP');
DefMath('\DiamonddotLeft', "\x{21D0}\x{27D0}", role=>'RELOP');
DefMath('\Diamonddotright', "\x{27D0}\x{2192}", role=>'RELOP');
DefMath('\DiamonddotRight', "\x{27D0}\x{21D2}", role=>'RELOP');
DefMath('\Diamondleft', "\x{2190}\x{25C7}", role=>'RELOP');
DefMath('\DiamondLeft', "\x{21D0}\x{25C7}", role=>'RELOP');
DefMath('\Diamondright', "\x{25C7}\x{2192}", role=>'RELOP');
DefMath('\DiamondRight', "\x{25C7}\x{21D2}", role=>'RELOP');
DefMath('\Eqcolon', "-::", role=>'RELOP');
DefMath('\eqcolon', "-:", role=>'RELOP');
DefMath('\Eqqcolon', "=::", role=>'RELOP');
DefMath('\eqqcolon', "\x{2255}", role=>'RELOP');
DefMath('\eqsim', "\x{2242}", role=>'RELOP');
DefMath('\leftsquigarrow', "\x{21DC}", role=>'RELOP');
DefMath('\lJoin', "\x{22C9}", role=>'RELOP');
DefMath('\lrtimes', "\x{22C8}", role=>'RELOP'); # ?
DefMath('\Join', "\x{22C8}", role=>'RELOP');
DefMath('\lrJoin', "\x{22C8}", role=>'RELOP');
DefMath('\Mappedfromchar', "\x{2AE4}", role=>'RELOP');
DefMath('\mappedfromchar', "\x{2ADE}", role=>'RELOP');
DefMath('\mmapstochar', "\x{2AE3}", role=>'RELOP');
DefMath('\Mmapstochar', "\x{2AE5}", role=>'RELOP');
DefMath('\multimapboth', "\x{29DF}", role=>'RELOP');
DefMath('\multimapdotbothA', "\x{22B6}", role=>'RELOP');
DefMath('\multimapdotbothB', "\x{22B7}", role=>'RELOP');
DefMath('\multimapinv', "\x{27DC}", role=>'RELOP');
DefMath('\napproxeq', "\x{224A}\x{0338}", meaning=>'not-approximately-equals', role=>'RELOP');
DefMath('\nasymp', "\x{226D}", meaning=>'not-equivalent-to', role=>'RELOP');
DefMath('\nbacksim', "\x{223D}\x{0337}", role=>'RELOP');
DefMath('\nbacksimeq', "\x{224C}\x{0338}", role=>'RELOP');
DefMath('\nBumpeq', "\x{224E}\x{0338}", role=>'RELOP');
DefMath('\nbumpeq', "\x{224F}\x{0338}", role=>'RELOP');
DefMath('\Nearrow', "\x{21D7}", role=>'ARROW');
DefMath('\nequiv', "\x{2262}", meaning=>'not-equivalent-to', role=>'RELOP');
DefMath('\ngg', "\x{226B}\x{0338}", role=>'RELOP');
DefMath('\ngtrapprox', "\x{2A86}\x{0338}",
DefMath('\ngtrless', "\x{2278}",
DefMath('\ngtrsim', "\x{2275}",
DefMath('\nlessapprox', "\x{2A85}\x{0338}",
DefMath('\nlessgtr', "\x{2279}",
DefMath('\nlesssim', "\x{2274}",
DefMath('\nll', "\x{226A}\x{0338}",
DefMath('\notin', "\x{2209}",
DefMath('\notni', "\x{220C}",
DefMath('\notowns', "\x{220C}",
DefMath('\nprecapprox', "\x{2AB7}\x{0338}",
DefMath('\npreccurlyeq', "\x{22E0}",
DefMath('\npreceqq', "\x{2AB3}\x{0338}", role=>'RELOP',
DefMath('\nprecsim', "\x{227E}\x{0338}", role=>'RELOP',
DefMath('\nsimeq', "\x{2243}\x{0338}", role=>'RELOP',
DefMath('\nsqsubset', "\x{228F}\x{0338}", role=>'RELOP',
DefMath('\nsqsubseteq', "\x{22E2}", role=>'RELOP',
DefMath('\nsqsupset', "\x{2290}\x{0338}", role=>'RELOP',
DefMath('\nsqsupseteq', "\x{22E3}", role=>'RELOP',
DefMath('\nSubset', "\x{22D0}\x{0338}", role=>'RELOP',
DefMath('\nsubseteqq', "\x{2AC5}\x{0338}", role=>'RELOP',
DefMath('\nsuccapprox', "\x{2AB8}\x{0338}", role=>'RELOP',
DefMath('\nsucccurlyeq', "\x{22E1}", role=>'RELOP',
DefMath('\nsucceqq', "\x{2AB4}\x{0338}", role=>'RELOP',
DefMath('\nsuccsim', "\x{227F}\x{0338}", role=>'RELOP',
DefMath('\nSupset', "\x{22D1}\x{0338}", role=>'RELOP',
DefMath('\nthickapprox', "\x{2249}", role=>'RELOP',
DefMath('\ntwoheadleftarrow', "\x{2B34}", role=>'RELOP');
DefMath('\ntwoheadrightarrow', "\x{2900}", role=>'RELOP');
DefMath('\nVdash', "\x{22AE}", role=>'RELOP',
DefMath('\Nwarrow', "\x{21D6}", role=>'ARROW');
DefMath('\Perp', "\x{2AEB}", role=>'RELOP');
DefMath('\preceqq', "\x{2AB3}", role=>'RELOP',
DefMath('\precneqq', "\x{2AB5}", role=>'RELOP',
DefMath('\rJoin', "\x{22CA}", role=>'RELOP',
DefMath('\Rrightarrow', "\x{21DB}", role=>'RELOP');
DefMath('\Searrow', "\x{21D8}", role=>'ARROW');
DefMath('\strictfi', "\x{297C}", role=>'RELOP');
DefMath('\strictif', "\x{297D}", role=>'RELOP');
DefMath('\strictiff', "\x{297C}\x{297D}", role=>'RELOP');
DefMath('\succeqq', "\x{2AB4}", role=>'RELOP',
DefMath('\succneqq', "\x{2AB6}", role=>'RELOP',
DefMath('\Swarrow', "\x{21D9}", role=>'ARROW');
DefMath('\varparallel', "\x{2AFD}", role=>'RELOP');
DefMath('\napprox', "\x{2249}", meaning=>'not-approximately-equals', role=>'RELOP');
DefMath('\nsubset', "\x{2284}", meaning=>'not-subset-of', role=>'RELOP');
DefMath('\nsupset', "\x{2285}", meaning=>'not-superset-of', role=>'RELOP');
DefMath('\Longmappedfrom', "\x{27FD}", role=>'ARROW');
DefMath('\Longmapsto', "\x{27FE}", role=>'ARROW');
DefMath('\Mappedfrom', "\x{2906}", role=>'ARROW');
DefMath('\Mapsto', "\x{2907}", role=>'ARROW');
DefMath('\alphaup', "\x{03B1}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ALPHA
DefMath('\betaup', "\x{03B2}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER BETA
DefMath('\gammaup', "\x{03B3}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER GAMMA
DefMath('\deltaup', "\x{03B4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER DELTA
DefMath('\epsilonup' , "\x{03F5}", font=>{shape=>'upright',forceshape=>1}); # GREEK LUNATE EPSILON SYMBOL
DefMath('\varepsilonup',"\x{03B5}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER EPSILON
DefMath('\zetaup', "\x{03B6}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ZETA
DefMath('\etaup', "\x{03B7}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ETA
DefMath('\thetaup', "\x{03B8}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER THETA
DefMath('\varthetaup', "\x{03D1}", font=>{shape=>'upright',forceshape=>1}); # GREEK THETA SYMBOL
DefMath('\iotaup', "\x{03B9}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER IOTA
DefMath('\kappaup', "\x{03BA}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER KAPPA
DefMath('\lambdaup', "\x{03BB}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER LAMDA
DefMath('\muup', "\x{03BC}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER MU
DefMath('\nuup', "\x{03BD}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER NU
DefMath('\xiup', "\x{03BE}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER XI
DefMath('\piup', "\x{03C0}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PI
DefMath('\varpiup', "\x{03D6}", font=>{shape=>'upright',forceshape=>1}); # GREEK PI SYMBOL
DefMath('\rhoup', "\x{03C1}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER RHO
DefMath('\varrhoup', "\x{03F1}", font=>{shape=>'upright',forceshape=>1}); # GREEK RHO SYMBOL
DefMath('\sigmaup', "\x{03C3}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER SIGMA
DefMath('\varsigmaup', "\x{03C2}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER FINAL SIGMA
DefMath('\tauup', "\x{03C4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER TAU
DefMath('\upsilonup', "\x{03C5}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER UPSILON
DefMath('\phiup', "\x{03D5}", font=>{shape=>'upright',forceshape=>1}); # GREEK PHI SYMBOL
DefMath('\varphiup', "\x{03C6}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PHI
DefMath('\chiup', "\x{03C7}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER CHI
DefMath('\psiup', "\x{03C8}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PSI
DefMath('\omegaup', "\x{03C9}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER OMEGA
DefMath('\varg', "\x{210A}");
DefMath('\Diamondblack', "\x{25C6}");
DefMath('\Diamonddot', "\x{27D0}");
DefMath('\mathcent', UTF(0xA2));
DefMath('\mathsterling', UTF(0xA3));
DefMath('\varclubsuit', "\x{2667}");
DefMath('\vardiamondsuit', "\x{2666}");
DefMath('\varheartsuit', "\x{2665}");
DefMath('\varspadesuit', "\x{2664}");
DefMath('\llbracket', "\x{27E6}", role=>'OPEN');
DefMath('\rrbracket', "\x{27E7}", role=>'CLOSE');
DefMath('\@vec{}','#1', role=>'ID',font=>{forcebold=>1});
DefMath('\@tens{}','\mathsf{#1}', role=>'ID'); # semantics?
DefMath('\la', "\x{2272}", role=>'RELOP', meaning=>'less-than-or-similar-to');
DefMath('\ga', "\x{2273}", role=>'RELOP', meaning=>'greater-than-or-similar-to');
DefMath('\cor', "\x{2258}", role=>'RELOP', meaning=>'corresonds-to');
DefMath('\sol', "\x{2A9D}", role=>'RELOP', meaning=>'similar-to-or-less-than');
DefMath('\sog', "\x{2A9E}", role=>'RELOP', meaning=>'similar-to-or-greater-than');
DefMath('\lse', "\x{2A8D}", role=>'RELOP', meaning=>'less-than-or-similar-to-or-equal');
DefMath('\gse', "\x{2A8E}", role=>'RELOP', meaning=>'greater-than-or-similar-to-or-equal');
DefMath('\leogr', "\x{2276}", role=>'RELOP', meaning=>'less-than-or-greater-than');
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than');
DefMath('\loa', "\x{2A85}", role=>'RELOP', meaning=>'less-than-or-approximately-equals');
DefMath('\goa', "\x{2A86}", role=>'RELOP', meaning=>'greater-than-or-approximately-equals');
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals');
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals');
DefMath('\getsto', "\x{21C6}", role=>'ARROW');
DefMath('\getsto', "\x{21C6}", role=>'ARROW');
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals');
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals');
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than');
DefMath('\ulcorner',"\x{231C}"); # TOP LEFT CORNER
DefMath('\urcorner',"\x{231D}"); # TOP RIGHT CORNER
DefMath('\llcorner',"\x{231E}"); # BOTTOM LEFT CORNER
DefMath('\lrcorner',"\x{231F}"); # BOTTOM RIGHT CORNER
DefMath('\dashrightarrow',"\x{21E2}", role=>'ARROW'); # RIGHTWARDS DASHED ARROW
DefMath('\dashleftarrow', "\x{21E0}", role=>'ARROW'); # LEFTWARDS DASHED ARROW
DefMath('\dasharrow', "\x{21E2}", role=>'ARROW'); # RIGHTWARDS DASHED ARROW
DefMath('\square',"\x{25A1}"); # WHITE SQUARE
DefMath('\lozenge',"\x{25C6}"); # WHITE DIAMOND
DefMath('\vartriangleright',"\x{22B3}"); # CONTAINS AS NORMAL SUBGROUP (\rhd)
DefMath('\vartriangleleft',"\x{22B2}"); # NORMAL SUBGROUP OF (\lhd)
DefMath('\trianglerighteq',"\x{22B5}"); # CONTAINS AS NORMAL SUBGROUP OR EQUAL TO (\unrhd)
DefMath('\trianglelefteq',"\x{22B4}"); # NORMAL SUBGROUP OF OR EQUAL TO (\unlhd)
DefMath('\rightsquigarrow',"\x{219D}", role=>'ARROW'); # RIGHTWARDS WAVE ARROW
DefMath('\omicron', "\x{03BF}"); # GREEK SMALL LETTER OMICRON
DefMath('\ualpha', "\x{03B1}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER ALPHA
DefMath('\ubeta', "\x{03B2}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER BETA
DefMath('\uchi', "\x{03C7}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER CHI
DefMath('\udelta', "\x{03B4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER DELTA
DefMath('\ugamma', "\x{03B3}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER GAMMA
DefMath('\umu', "\x{03BC}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER MU
DefMath('\unu', "\x{03BD}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER NU
DefMath('\upi', "\x{03C0}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER PI
DefMath('\utau', "\x{03C4}", font=>{shape=>'upright',forceshape=>1}); # GREEK SMALL LETTER TAU
DefMath('\varDelta', "\x{0394}",font=>{shape=>'italic'});
DefMath('\varGamma', "\x{0393}",font=>{shape=>'italic'});
DefMath('\varLambda', "\x{039B}",font=>{shape=>'italic'});
DefMath('\varOmega', "\x{03A9}",font=>{shape=>'italic'});
DefMath('\varPhi', "\x{03A6}",font=>{shape=>'italic'});
DefMath('\varPi', "\x{03A0}",font=>{shape=>'italic'});
DefMath('\varPsi', "\x{03A8}",font=>{shape=>'italic'});
DefMath('\varSigma', "\x{03A3}",font=>{shape=>'italic'});
DefMath('\varTheta', "\x{0398}",font=>{shape=>'italic'});
DefMath('\varUpsilon', "\x{03A5}",font=>{shape=>'italic'});
DefMath('\varXi', "\x{039E}",font=>{shape=>'italic'});
DefMath('\getsto', "\x{21C6}", role=>'ARROW');
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals');
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals');
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than');
DefMath('\and', '\&', role=>'ADDOP', meaning=>'and');
DefMath('\rmd', "\x{2146}", role=>'DIFFOP', meaning=>'differential-d');
DefMath('\rme', "\x{2147}", role=>'ID', meaning=>'exponential-e');
DefMath('\rmi', "\x{2148}", role=>'ID', meaning=>'imaginary-i');
DefMath('\Tr','\mathrm{Tr}', role=>'OPFUNCTION', meaning=>'trace');
DefMath('\tr','\mathrm{tr}', role=>'OPFUNCTION', meaning=>'trace');
DefMath('\Or','\mathrm{O}', role=>"OPFUNCTION", meaning=>'Big-O');
DefMath('\tdot Digested', "\x{2026}", operator_role=>'OVERACCENT');
DefMath('\lshad', "\x{27E6}", role=>'OPEN');
DefMath('\rshad', "\x{27E7}", role=>'CLOSE');
DefMath('\digamma', "\x{03DD}"); # GREEK SMALL LETTER DIGAMMA
DefMath('\varkappa', "\x{03F0}"); # GREEK KAPPA SYMBOL
DefMath('\beth', "\x{2136}"); # BET SYMBOL
DefMath('\daleth', "\x{2138}"); # DALET SYMBOL
DefMath('\gimel', "\x{2137}"); # GIMEL SYMBOL
DefMath('\hslash', "\x{210F}", role=>'ID', meaning=>'Planck-constant-over-2-pi');
DefMath('\vartriangle', "\x{25B3}");
DefMath('\triangledown', "\x{25BD}");
DefMath('\circledS', "\x{24C8}");
DefMath('\measuredangle', "\x{2221}");
DefMath('\nexists', "\x{2204}", role=>'FUNCTION', meaning=>'not-exists');
DefMath('\Finv', "\x{2132}");
DefMath('\Game', "\x{2141}");
DefMath('\Bbbk', "\x{1D55C}");
DefMath('\backprime', "\x{2035}");
DefMath('\varnothing', "\x{2205}", role=>'ID', meaning=>'empty-set');
DefMath('\blacktriangle', "\x{25B2}");
DefMath('\blacktriangledown', "\x{25BC}");
DefMath('\blacksquare', "\x{25A0}");
DefMath('\blacklozenge', "\x{25C6}");
DefMath('\bigstar', "\x{2605}");
DefMath('\sphericalangle', "\x{2222}");
DefMath('\complement', "\x{2201}", meaning=>'complement');
DefMath('\eth', UTF(0xF0));
DefMath('\diagup', "\x{2571}");
DefMath('\diagdown', "\x{2572}");
DefMath('\dotplus', "\x{2214}", role=>'ADDOP'); # DOT PLUS
DefMath('\smallsetminus', "\x{2216}", role=>'ADDOP', meaning=>'set-minus');
DefMath('\Cap', "\x{22D2}", role=>'ADDOP', meaning=>'double-intersection');
DefMath('\doublecap', "\x{22D2}", role=>'ADDOP', meaning=>'double-intersection');
DefMath('\Cup', "\x{22D3}", role=>'ADDOP', meaning=>'double-union');
DefMath('\doublecup', "\x{22D3}", role=>'ADDOP', meaning=>'double-union');
DefMath('\barwedge', "\x{22BC}", role=>'ADDOP', meaning=>'not-and');
DefMath('\veebar', "\x{22BB}", role=>'ADDOP', meaning=>'exclusive-or');
DefMath('\doublebarwedge', "\x{2A5E}", role=>'ADDOP');
DefMath('\boxminus', "\x{229F}", role=>'ADDOP'); # SQUARED MINUS
DefMath('\boxtimes', "\x{22A0}", role=>'MULOP'); # SQUARED TIMES
DefMath('\boxdot', "\x{22A1}", role=>'MULOP'); # SQUARED DOT OPERATOR
DefMath('\boxplus', "\x{229E}", role=>'ADDOP'); # SQUARED PLUS
DefMath('\divideontimes', "\x{22C7}", role=>'MULOP'); # DIVISION TIMES
DefMath('\ltimes', "\x{22C9}", role=>'MULOP', meaning=>'left-normal-factor-semidirect-product');
DefMath('\rtimes', "\x{22CA}", role=>'MULOP', meaning=>'right-normal-factor-semidirect-product');
DefMath('\leftthreetimes', "\x{22CB}", role=>'MULOP', meaning=>'left-semidirect-product');
DefMath('\rightthreetimes', "\x{22CC}", role=>'MULOP', meaning=>'right-semidirect-product');
DefMath('\curlywedge', "\x{22CF}", role=>'ADDOP', meaning=>'and');
DefMath('\curlyvee', "\x{22CE}", role=>'ADDOP', meaning=>'or');
DefMath('\circleddash', "\x{229D}", role=>'ADDOP'); # CIRCLED DASH
DefMath('\circledast', "\x{229B}", role=>'MULOP'); # CIRCLED ASTERISK OPERATOR
DefMath('\circledcirc', "\x{229A}", role=>'MULOP'); # CIRCLED RING OPERATOR
DefMath('\centerdot', "\x{2219}", role=>'MULOP'); # CIRCLED DOT OPERATOR
DefMath('\intercal', "\x{22BA}", role=>'ADDOP'); # INTERCALATE
DefMath('\leqq', "\x{2266}", role=>'RELOP',
DefMath('\leqslant', "\x{2A7D}", role=>'RELOP',
DefMath('\eqslantless', "\x{2A95}", role=>'RELOP',
DefMath('\lesssim', "\x{2272}", role=>'RELOP',
DefMath('\lessapprox', "\x{2A85}", role=>'RELOP',
DefMath('\approxeq', "\x{224A}", role=>'RELOP',
DefMath('\lessdot', "\x{22D6}", role=>'RELOP'); # LESS-THAN WITH DOT
DefMath('\lll', "\x{22D8}", role=>'RELOP',
DefMath('\llless', "\x{22D8}", role=>'RELOP',
DefMath('\lessgtr', "\x{2276}", role=>'RELOP',
DefMath('\lesseqgtr', "\x{22DA}", role=>'RELOP',
DefMath('\lesseqqgtr', "\x{2A8B}", role=>'RELOP',
DefMath('\doteqdot', "\x{2251}", role=>'RELOP',
DefMath('\Doteq', "\x{2251}", role=>'RELOP',
DefMath('\risingdotseq', "\x{2253}", role=>'RELOP',
DefMath('\fallingdotseq', "\x{2252}", role=>'RELOP',
DefMath('\backsim', "\x{223D}", role=>'RELOP'); # REVERSED TILDE
DefMath('\backsimeq', "\x{224C}", role=>'RELOP'); # ALL EQUAL TO; Note: this has double rather than single bar!!!
DefMath('\subseteqq', "\x{2AC5}", role=>'RELOP',
DefMath('\Subset', "\x{22D0}", role=>'RELOP',
DefMath('\preccurlyeq', "\x{227C}", role=>'RELOP',
DefMath('\curlyeqprec', "\x{22DE}", role=>'RELOP',
DefMath('\precsim', "\x{227E}", role=>'RELOP',
DefMath('\precapprox', "\x{2AB7}", role=>'RELOP',
DefMath('\vDash', "\x{22A8}", role=>'RELOP'); # TRUE
DefMath('\Vvdash', "\x{22AA}", role=>'RELOP'); # TRIPLE VERTICAL BAR RIGHT TURNSTILE
DefMath('\smallsmile', "\x{2323}", role=>'RELOP'); # SMILE (small ?)
DefMath('\smallfrown', "\x{2322}", role=>'RELOP'); # FROWN (small ?)
DefMath('\bumpeq', "\x{224F}", role=>'RELOP',
DefMath('\Bumpeq', "\x{224E}", role=>'RELOP',
DefMath('\geqq', "\x{2267}", role=>'RELOP',
DefMath('\geqslant', "\x{2A7E}", role=>'RELOP',
DefMath('\eqslantgtr', "\x{2A96}", role=>'RELOP',
DefMath('\gtrsim', "\x{2273}", role=>'RELOP',
DefMath('\gtrapprox', "\x{2A86}", role=>'RELOP',
DefMath('\eqsim', "\x{2242}", role=>'RELOP'); # MINUS TILDE
DefMath('\gtrdot', "\x{22D7}", role=>'RELOP'); # GREATER-THAN WITH DOT
DefMath('\ggg', "\x{22D9}", role=>'RELOP',
DefMath('\gggtr', "\x{22D9}", role=>'RELOP',
DefMath('\gtrless', "\x{2277}", role=>'RELOP',
DefMath('\gtreqless', "\x{22DB}", role=>'RELOP',
DefMath('\gtreqqless', "\x{2A8C}", role=>'RELOP',
DefMath('\eqcirc', "\x{2256}", role=>'RELOP'); # RING IN EQUAL TO
DefMath('\circeq', "\x{2257}", role=>'RELOP'); # RING EQUAL TO
DefMath('\triangleq', "\x{225C}", role=>'RELOP'); # DELTA EQUAL TO
DefMath('\thicksim', "\x{223C}", role=>'RELOP'); # TILDE OPERATOR; Not thick!!!
DefMath('\thickapprox', "\x{2248}", role=>'RELOP',
DefMath('\supseteqq', "\x{2AC6}", role=>'RELOP',
DefMath('\Supset', "\x{22D1}", role=>'RELOP',
DefMath('\succcurlyeq', "\x{227D}", role=>'RELOP',
DefMath('\curlyeqsucc', "\x{22DF}", role=>'RELOP',
DefMath('\succsim', "\x{227F}", role=>'RELOP',
DefMath('\succapprox', "\x{2AB8}", role=>'RELOP',
DefMath('\Vdash', "\x{22A9}", role=>'RELOP',
DefMath('\shortmid', "\x{2223}", role=>'RELOP',
DefMath('\shortparallel', "\x{2225}", role=>'RELOP',
DefMath('\between', "\x{226C}", role=>'RELOP',
DefMath('\pitchfork', "\x{22D4}", role=>'RELOP',
DefMath('\varpropto', "\x{221D}", role=>'RELOP',
DefMath('\blacktriangleleft', "\x{25C0}", role=>'RELOP'); # BLACK LEFT-POINTING TRIANGLE
DefMath('\therefore', "\x{2234}", role=>'METARELOP',
DefMath('\backepsilon', "\x{03F6}", role=>'RELOP'); # GREEK REVERSED LUNATE EPSILON SYMBOL
DefMath('\blacktriangleright', "\x{25B6}", role=>'RELOP'); # BLACK RIGHT-POINTING TRIANGLE
DefMath('\because', "\x{2235}", role=>'METARELOP',
DefMath('\nless', "\x{226E}", role=>'RELOP',
DefMath('\nleq', "\x{2270}", role=>'RELOP',
DefMath('\nleqslant', "\x{2A7D}\x{0338}", role=>'RELOP',
DefMath('\nleqq', "\x{2266}\x{0338}", role=>'RELOP',
DefMath('\lneq', "\x{2A87}", role=>'RELOP',
DefMath('\lneqq', "\x{2268}", role=>'RELOP',
DefMath('\lvertneqq', "\x{2268}", role=>'RELOP',
DefMath('\lnsim', "\x{22E6}", role=>'RELOP',
DefMath('\lnapprox', "\x{2A89}", role=>'RELOP',
DefMath('\nprec', "\x{2280}", role=>'RELOP',
DefMath('\npreceq', "\x{22E0}", role=>'RELOP',
DefMath('\precneqq', "\x{2AB5}", role=>'RELOP',
DefMath('\precnsim', "\x{22E8}", role=>'RELOP',
DefMath('\precnapprox', "\x{2AB9}", role=>'RELOP',
DefMath('\nsim', "\x{2241}", role=>'RELOP',
DefMath('\nshortmid', "\x{2224}", role=>'RELOP',
DefMath('\nmid', "\x{2224}", role=>'RELOP',
DefMath('\nvdash', "\x{22AC}", role=>'RELOP',
DefMath('\nVdash', "\x{22AE}", role=>'RELOP',
DefMath('\ntriangleleft', "\x{22EA}", role=>'RELOP',
DefMath('\ntrianglelefteq', "\x{22EC}", role=>'RELOP',
DefMath('\nsubseteq', "\x{2288}", role=>'RELOP',
DefMath('\nsubseteqq', "\x{2AC5}\x{0338}", role=>'RELOP',
DefMath('\subsetneq', "\x{228A}", role=>'RELOP',
DefMath('\varsubsetneq', "\x{228A}", role=>'RELOP',
DefMath('\subsetneqq', "\x{2ACB}", role=>'RELOP',
DefMath('\varsubsetneqq', "\x{2ACB}", role=>'RELOP',
DefMath('\supsetneq', "\x{228B}", role=>'RELOP',
DefMath('\varsupsetneq', "\x{228B}", role=>'RELOP',
DefMath('\supsetneqq', "\x{2ACC}", role=>'RELOP',
DefMath('\varsupsetneqq', "\x{2ACC}", role=>'RELOP',
DefMath('\ngtr', "\x{226F}", role=>'RELOP',
DefMath('\ngeq', "\x{2271}", role=>'RELOP',
DefMath('\ngeqslant', "\x{2A7E}\x{0338}", role=>'RELOP',
DefMath('\ngeqq', "\x{2267}\x{0338}", role=>'RELOP',
DefMath('\gneq', "\x{2A88}", role=>'RELOP',
DefMath('\gneqq', "\x{2269}", role=>'RELOP',
DefMath('\gvertneqq', "\x{2269}", role=>'RELOP',
DefMath('\gnsim', "\x{22E7}", role=>'RELOP',
DefMath('\gnapprox', "\x{2A8A}", role=>'RELOP',
DefMath('\nsucc', "\x{2281}", role=>'RELOP',
DefMath('\nsucceq', "\x{22E1}", role=>'RELOP',
DefMath('\succneqq', "\x{2AB6}", role=>'RELOP',
DefMath('\succnsim', "\x{22E9}", role=>'RELOP',
DefMath('\succnapprox', "\x{2ABA}", role=>'RELOP',
DefMath('\ncong', "\x{2247}", role=>'RELOP',
DefMath('\nshortparallel', "\x{2226}", role=>'RELOP',
DefMath('\nparallel', "\x{2226}", role=>'RELOP',
DefMath('\nvDash', "\x{22AD}", role=>'RELOP'); # NOT TRUE
DefMath('\nVDash', "\x{22AF}", role=>'RELOP'); # NEGATED DOUBLE VERTICAL BAR DOUBLE RIGHT TURNSTILE
DefMath('\ntriangleright', "\x{22EB}", role=>'RELOP',
DefMath('\ntrianglerighteq', "\x{22ED}", role=>'RELOP',
DefMath('\nsupseteq', "\x{2289}", role=>'RELOP',
DefMath('\nsupseteqq', "\x{2AC6}\x{0338}", role=>'RELOP',
DefMath('\leftleftarrows', "\x{21C7}", role=>'ARROW'); # LEFTWARDS PAIRED ARROWS
DefMath('\leftrightarrows', "\x{21C6}", role=>'ARROW'); # LEFTWARDS ARROW OVER RIGHTWARDS ARROW
DefMath('\Lleftarrow', "\x{21DA}", role=>'ARROW'); # LEFTWARDS TRIPLE ARROW
DefMath('\twoheadleftarrow', "\x{219E}", role=>'ARROW'); # LEFTWARDS TWHO HEADED ARROW
DefMath('\leftarrowtail', "\x{21A2}", role=>'ARROW'); # LEFTWARDS ARROW WITH TAIL
DefMath('\looparrowleft', "\x{21AB}", role=>'ARROW'); # leftwards arrow with loop
DefMath('\leftrightharpoons', "\x{21CB}", role=>'ARROW'); # LEFTWARDS HARPOON OVER RIGHTWARDS HARPOON
DefMath('\curvearrowleft', "\x{21B6}", role=>'ARROW'); # ANTICLOCKWISE TOP SEMICIRCLE ARROW
DefMath('\circlearrowleft', "\x{21BA}", role=>'ARROW'); # ANTICLOCKWISE OPEN CIRCLE ARROW
DefMath('\Lsh', "\x{21B0}", role=>'ARROW'); # UPWAARDS ARROW WITH TIP LEFTWARDS
DefMath('\upuparrows', "\x{21C8}", role=>'ARROW'); # UPWARDS PAIRED ARROWS
DefMath('\upharpoonleft', "\x{21BF}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB LEFTWARDS
DefMath('\rightrightarrows', "\x{21C9}", role=>'ARROW'); # RIGHTWARDS PAIRED ARROWS
DefMath('\rightleftarrows', "\x{21C4}", role=>'ARROW'); # RIGHTWARDS ARROW OVER LEFTWARD ARROW
DefMath('\Rrightarrow', "\x{21DB}", role=>'ARROW'); # RIGHTWARDS TRIPLE ARROW
DefMath('\twoheadrightarrow', "\x{21A0}", role=>'ARROW'); # RIGHTWARDS TWO HEADED ARROW
DefMath('\rightarrowtail', "\x{21A3}", role=>'ARROW'); # RIGHTWARDS ARROW WITH TAIL
DefMath('\looparrowright', "\x{21AC}", role=>'ARROW'); # RIGHTWARDS ARROW WITH LOOP
DefMath('\curvearrowright', "\x{21B7}", role=>'ARROW'); # CLOCKWISE TOP SEMICIRCLE ARROW
DefMath('\circlearrowright', "\x{21BB}", role=>'ARROW'); # CLOCKWISE OPEN CIRCLE ARROW
DefMath('\Rsh', "\x{21B1}", role=>'ARROW'); # UPWAARDS ARROW WITH TIP RIGHTWARDS
DefMath('\downdownarrows', "\x{21CA}", role=>'ARROW'); # DOWNWARDS PAIRED ARROWS
DefMath('\upharpoonright', "\x{21BE}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS
DefMath('\restriction', "\x{21BE}", role=>'ARROW'); # UPWARDS HARPOON WITH BARB RIGHTWARDS
DefMath('\downharpoonleft', "\x{21C3}", role=>'ARROW'); # DOWNWARDS HARPOON WITH BARB LEFTWARDS
DefMath('\multimap', "\x{22B8}", role=>'ARROW'); # MULTIMAP
DefMath('\leftrightsquigarrow', "\x{21AD}", role=>'ARROW'); # LEFT RIGHT WAVE ARROW
DefMath('\downharpoonright', "\x{21C2}", role=>'ARROW'); # DOWNWARDS HARPOON WITH BARB RIGHTWARDS
DefMath('\nleftarrow', "\x{219A}", role=>'ARROW'); # LEFTWARDS ARROW WITH STROKE
DefMath('\nLeftarrow', "\x{21CD}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE
DefMath('\nleftrightarrow', "\x{21AE}", role=>'ARROW'); # LEFT RIGHT ARROW WITH STROKE
DefMath('\nrightarrow', "\x{219B}", role=>'ARROW'); # RIGHTWARDS ARROW WITH STROKE
DefMath('\nRightarrow', "\x{21CF}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW WITH STROKE
DefMath('\nLeftrightarrow', "\x{21CE}", role=>'ARROW'); # LEFT RIGHT DOUBLE ARROW WITH STROKE
DefMath('\injlim', "inj lim",
DefMath('\projlim', "proj lim",
DefMath('\varlimsup', '\overline{\lim}',
DefMath('\varliminf', '\underline{\lim}',
DefMath('\varinjlim', '\underrightarrow{\lim}',
DefMath('\varprojlim','\underleftarrow{\lim}',
DefMathI('\sgn', undef,"sgn", role=>'OPFUNCTION', meaning=>'sign');
DefMathI('\Alpha', undef,"\x{0391}");
DefMathI('\Beta', undef,"\x{0392}");
DefMathI('\Epsilon' , undef,"\x{0395}");
DefMathI('\Zeta', undef,"\x{0396}");
DefMathI('\Eta', undef,"\x{0397}");
DefMathI('\Iota', undef,"\x{0399}");
DefMathI('\Kappa', undef,"\x{039A}");
DefMathI('\Mu', undef,"\x{039C}");
DefMathI('\Nu', undef,"\x{039D}");
DefMathI('\Omicron', undef,"\x{039F}");
DefMathI('\Rho', undef,"\x{03A1}");
DefMathI('\Tau', undef,"\x{03A4}");
DefMathI('\Chi', undef,"\x{03A7}");
DefMathI('\Digamma', undef, "\x{03DC}"); # GREEK LETTER DIGAMMA
DefMathI('\digamma', undef, "\x{03DD}"); # GREEK SMALL LETTER DIGAMMA
DefMathI('\Coppa', undef, "\x{03D8}"); # GREEK LETTER ARCHAIC KOPPA
DefMathI('\coppa', undef, "\x{03D9}"); # GREEK SMALL LETTER ARCHAIC KOPPA
DefMathI('\varcoppa', undef, "\x{03D9}"); # GREEK SMALL LETTER ARCHAIC KOPPA
DefMathI('\Koppa', undef, "\x{03DE}"); # GREEK LETTER KOPPA
DefMathI('\koppa', undef, "\x{03DF}"); # GREEK SMALL LETTER KOPPA
DefMathI('\Stigma', undef, "\x{03DA}"); # GREEK LETTER STIGAM
DefMathI('\stigma', undef, "\x{03DB}"); # GREEK SMALL LETTER STIGMA
DefMathI('\varstigma',undef, "\x{03DB}"); # GREEK SMALL LETTER STIGMA
DefMathI('\Sampi', undef, "\x{03E0}"); # GREEK LETTER SAMPI
DefMathI('\sampi', undef, "\x{03E1}"); # GREEK SMALL LETTER SAMPI
DefMathI('\sen', undef,"sen", role=>'TRIGFUNCTION', meaning=>'sine');
DefMath('\@fd', '\aas@@fstack{\fd}{d}', role=>'ID', meaning=>'day', alias=>'\fd');
DefMath('\@fh', '\aas@@fstack{\fh}{h}', role=>'ID', meaning=>'hour', alias=>'\fh');
DefMath('\@fm', '\aas@@fstack{\fm}{m}', role=>'ID', meaning=>'minute', alias=>'\fm');
DefMath('\@fs', '\aas@@fstack{\fs}{s}', role=>'ID', meaning=>'second', alias=>'\fs');
DefMath('\@fdg', '\aas@@fstack{\fdg}{\circ}', role=>'ID', meaning=>'degree', alias=>'\fdg');
DefMath('\@farcm','\aas@@fstack{\farcm}{\prime}', role=>'ID', meaning=>'arcminute', alias=>'\farcm');
DefMath('\@farcs','\aas@@fstack{\farcs}{\prime\prime}', role=>'ID', meaning=>'arcsecond', alias=>'\farcs');
DefMath('\@fp', '\aas@@fstack{\fp}{p}');
DefMath('\dddot{}', "\x{02D9}\x{02D9}\x{02D9}", operator_role=>'OVERACCENT'); # DOT ABOVE
DefMath('\ddddot{}',"\x{02D9}\x{02D9}\x{02D9}\x{02D9}", operator_role=>'OVERACCENT'); # DOT ABOVE
DefMath('\implies', "\x{27F9}", role=>'ARROW', meaning=>'implies');
DefMath('\impliedby',"\x{27F8}", role=>'ARROW', meaning=>'implied-by');
DefMath('\And','&', role=>'ADDOP', meaning=>'and');
DefMath('\underrightarrow{}', "\x{2192}", operator_role=>'UNDERACCENT');
DefMath('\underleftarrow{}', "\x{2190}", operator_role=>'UNDERACCENT');
DefMath('\overleftrightarrow{}', "\x{2194}", operator_role=>'OVERACCENT');
DefMath('\underleftrightarrow{}',"\x{2194}", operator_role=>'UNDERACCENT');
DefMath('\lvert','|', role=>'OPEN');
DefMath('\lVert',"\x{2225}", role=>'OPEN'); # PARALLEL TO
DefMath('\rvert','|', role=>'CLOSE');
DefMath('\rVert',"\x{2225}", role=>'CLOSE'); # PARALLEL TO
DefMath('\mod', 'mod', role=>'MODIFIEROP', meaning=>'modulo');
DefMath('\pod{}', '(#1)', role=>'MODIFIER', meaning=>'modulo'); # Well, sorta postfix..
DefMath('\iint', "\x{222C}", meaning=>'double-integral', role=>'INTOP',
DefMath('\iiint',"\x{222D}", meaning=>'triple-integral', role=>'INTOP',
DefMath('\iiiint',"\x{2A0C}", meaning=>'quadruple-integral', role=>'INTOP',
DefMath('\idotsint',"\x{222B}\x{22EF}\x{222B}", meaning=>'multiple-integral', role=>'INTOP',
DefMath('\varGamma', "\x{0393}",font=>{shape=>'italic'});
DefMath('\varSigma', "\x{03A3}",font=>{shape=>'italic'});
DefMath('\varDelta', "\x{0394}",font=>{shape=>'italic'});
DefMath('\varUpsilon', "\x{03A5}",font=>{shape=>'italic'});
DefMath('\varTheta', "\x{0398}",font=>{shape=>'italic'});
DefMath('\varPhi', "\x{03A6}",font=>{shape=>'italic'});
DefMath('\varLambda', "\x{039B}",font=>{shape=>'italic'});
DefMath('\varPsi', "\x{03A8}",font=>{shape=>'italic'});
DefMath('\varXi', "\x{039E}",font=>{shape=>'italic'});
DefMath('\varOmega', "\x{03A9}",font=>{shape=>'italic'});
DefMath('\varPi', "\x{03A0}",font=>{shape=>'italic'});
DefMath('\la', "\x{2272}", role=>'RELOP', meaning=>'less-than-or-similar-to');
DefMath('\ga', "\x{2273}", role=>'RELOP', meaning=>'greater-than-or-similar-to');
DefMath('\cor', "\x{2258}", role=>'RELOP', meaning=>'corresonds-to');
DefMath('\sol', "\x{2A9D}", role=>'RELOP', meaning=>'similar-to-or-less-than');
DefMath('\sog', "\x{2A9E}", role=>'RELOP', meaning=>'similar-to-or-greater-than');
DefMath('\lse', "\x{2A8D}", role=>'RELOP', meaning=>'less-than-or-similar-to-or-equal');
DefMath('\gse', "\x{2A8E}", role=>'RELOP', meaning=>'greater-than-or-similar-to-or-equal');
DefMath('\leogr', "\x{2276}", role=>'RELOP', meaning=>'less-than-or-greater-than');
DefMath('\grole', "\x{2277}", role=>'RELOP', meaning=>'greater-than-or-less-than');
DefMath('\loa', "\x{2A85}", role=>'RELOP', meaning=>'less-than-or-approximately-equals');
DefMath('\goa', "\x{2A86}", role=>'RELOP', meaning=>'greater-than-or-approximately-equals');
DefMath('\lid', "\x{2266}", role=>'RELOP', meaning=>'less-than-or-equals');
DefMath('\gid', "\x{2267}", role=>'RELOP', meaning=>'greater-than-or-equals');
DefMath('\getsto', "\x{21C6}", role=>'ARROW');
DefMath('\leqslant', "\x{2A7D}", role=>'RELOP',
DefMath('\geqslant', "\x{2A7E}", role=>'RELOP',
DefMath('\Cset', "\x{2102}", role=>'ID', meaning=>'complexes'); # DOUBLE-STRUCK CAPITAL C
DefMath('\Hset', "\x{210D}", role=>'ID', meaning=>'upper-complexes'); # DOUBLE-STRUCK CAPITAL H
DefMath('\Nset', "\x{2115}", role=>'ID', meaning=>'numbers'); # DOUBLE-STRUCK CAPITAL N
DefMath('\Qset', "\x{211A}", role=>'ID', meaning=>'rationals'); # DOUBLE-STRUCK CAPITAL Q
DefMath('\Rset', "\x{211D}", role=>'ID', meaning=>'reals'); # DOUBLE-STRUCK CAPITAL R
DefMath('\Zset', "\x{2124}", role=>'ID', meaning=>'integers'); # DOUBLE-STRUCK CAPITAL Z
DefMath('\d', "\x{2146}", role=>'DIFFOP', meaning=>'differential-d');
DefMath('\e', "\x{2147}", role=>'ID', meaning=>'exponential-e');
DefMath('\pol Digested', "\x{2192}", operator_role=>'OVERACCENT'); # RIGHTWARDS ARROW
DefMath('\omicron', "\x{03BF}"); # GREEK SMALL LETTER OMICRON
DefMathI('\upalpha', undef,"\x{03B1}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upbeta', undef,"\x{03B2}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upgamma', undef,"\x{03B3}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\updelta', undef,"\x{03B4}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upepsilon' , undef,"\x{03F5}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upzeta', undef,"\x{03B6}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upeta', undef,"\x{03B7}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\uptheta', undef,"\x{03B8}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upiota', undef,"\x{03B9}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upkappa', undef,"\x{03BA}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\uplambda', undef,"\x{03BB}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upmu', undef,"\x{03BC}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upnu', undef,"\x{03BD}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upxi', undef,"\x{03BE}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\uppi', undef,"\x{03C0}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\uprho', undef,"\x{03C1}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upsigma', undef,"\x{03C3}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\uptau', undef,"\x{03C4}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upupsilon', undef,"\x{03C5}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upphi', undef,"\x{03D5}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upchi', undef,"\x{03C7}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\uppsi', undef,"\x{03C8}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upomega', undef,"\x{03C9}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upvarepsilon',undef,"\x{03B5}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upvartheta', undef,"\x{03D1}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upvarpi', undef,"\x{03D6}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\upvarphi', undef,"\x{03C6}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Upgamma', undef,"\x{0393}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Updelta', undef,"\x{0394}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Uptheta', undef,"\x{0398}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Uplambda', undef,"\x{039B}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Upxi', undef,"\x{039E}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Uppi', undef,"\x{03A0}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Upsigma', undef,"\x{03A3}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Upupsilon', undef,"\x{03A5}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Upphi', undef,"\x{03A6}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Uppsi', undef,"\x{03A8}", font=>{shape=>'upright',forceshape=>1});
DefMathI('\Upomega', undef,"\x{03A9}", font=>{shape=>'upright',forceshape=>1});
DefMath('\lambdabar',"\x{03BB}\x{0304}");
DefMath('\gtrsim', "\x{2273}", role=>'RELOP',
DefMath('\lesssim', "\x{2272}", role=>'RELOP',
DefMath('\precsim', "\x{227E}", role=>'RELOP',
DefMath('\succsim', "\x{227F}", role=>'RELOP',
DefMath('\overcirc{}', "\x{030A}", operator_role=>'OVERACCENT'); # same as mathring
DefMath('\dddot{}', "\x{02D9}\x{02D9}\x{02D9}",operator_role=>'OVERACCENT'); # DOT ABOVE
DefMath('\triangleq', "\x{225C}", role=>'RELOP'); # DELTA EQUAL TO
DefMath('\loarrow{}', "\x{20D6}", operator_role=>'OVERACCENT');
DefMath('\roarrow{}', "\x{20D7}", operator_role=>'OVERACCENT');
DefMath('\overstar{}', "\x{0359}", operator_role=>'OVERACCENT');
DefMath('\tensor{}', "\x{20E1}", operator_role=>'OVERACCENT');
DefMathI('=',undef,'=', role=>'RELOP', meaning=>'equals');
DefMathI('+',undef,'+', role=>'ADDOP', meaning=>'plus');
DefMathI('-',undef,'-', role=>'ADDOP', meaning=>'minus');
DefMathI('*',undef,'*', role=>'MULOP', meaning=>'times');
DefMathI('/',undef,'/', role=>'MULOP', meaning=>'divide', mathstyle=>'inline');
DefMathI('!',undef,'!', role=>'POSTFIX', meaning=>'factorial');
DefMathI(',',undef,',', role=>'PUNCT');
DefMathI('.',undef,'.', role=>'PERIOD');
DefMathI(';',undef,';', role=>'PUNCT');
DefMathI('(',undef,'(', role=>'OPEN'); DefMathI(')',undef,')', role=>'CLOSE');
DefMathI('[',undef,'[', role=>'OPEN'); DefMathI(']',undef,']', role=>'CLOSE');
DefMathI('|',undef,'|', role=>'VERTBAR');
DefMathI(':',undef,':', role=>'METARELOP', name=>'colon'); # Seems like good default role
DefMathI('<',undef,'<', role=>'RELOP', meaning=>'less-than');
DefMathI('>',undef,'>', role=>'RELOP', meaning=>'greater-than');
DefMathI($digit,undef,$digit, role=>'NUMBER',meaning=>$digit); }
DefMathI('\alpha', undef,"\x{03B1}");
DefMathI('\beta', undef,"\x{03B2}");
DefMathI('\gamma', undef,"\x{03B3}");
DefMathI('\delta', undef,"\x{03B4}");
DefMathI('\epsilon' , undef,"\x{03F5}");
DefMathI('\varepsilon',undef,"\x{03B5}");
DefMathI('\zeta', undef,"\x{03B6}");
DefMathI('\eta', undef,"\x{03B7}");
DefMathI('\theta', undef,"\x{03B8}");
DefMathI('\vartheta', undef,"\x{03D1}");
DefMathI('\iota', undef,"\x{03B9}");
DefMathI('\kappa', undef,"\x{03BA}");
DefMathI('\lambda', undef,"\x{03BB}");
DefMathI('\mu', undef,"\x{03BC}");
DefMathI('\nu', undef,"\x{03BD}");
DefMathI('\xi', undef,"\x{03BE}");
DefMathI('\pi', undef,"\x{03C0}");
DefMathI('\varpi', undef,"\x{03D6}");
DefMathI('\rho', undef,"\x{03C1}");
DefMathI('\varrho', undef,"\x{03F1}");
DefMathI('\sigma', undef,"\x{03C3}");
DefMathI('\varsigma', undef,"\x{03C2}");
DefMathI('\tau', undef,"\x{03C4}");
DefMathI('\upsilon', undef,"\x{03C5}");
DefMathI('\phi', undef,"\x{03D5}");
DefMathI('\varphi', undef,"\x{03C6}");
DefMathI('\chi', undef,"\x{03C7}");
DefMathI('\psi', undef,"\x{03C8}");
DefMathI('\omega', undef,"\x{03C9}");
DefMathI('\Gamma', undef,"\x{0393}");
DefMathI('\Delta', undef,"\x{0394}");
DefMathI('\Theta', undef,"\x{0398}");
DefMathI('\Lambda', undef,"\x{039B}");
DefMathI('\Xi', undef,"\x{039E}");
DefMathI('\Pi', undef,"\x{03A0}");
DefMathI('\Sigma', undef,"\x{03A3}");
DefMathI('\Upsilon', undef,"\x{03A5}");
DefMathI('\Phi', undef,"\x{03A6}");
DefMathI('\Psi', undef,"\x{03A8}");
DefMathI('\Omega', undef,"\x{03A9}");
DefMathI('\aleph', undef,"\x{2135}");
DefMathI('\hbar', undef,"\x{210F}", role=>'ID', meaning=>'Planck-constant-over-2-pi');
DefMathI('\imath', undef,"\x{0131}");
DefMathI('\jmath', undef,"\x{0237}");
DefMathI('\ell', undef,"\x{2113}");
DefMathI('\wp', undef,"\x{2118}", meaning=>'Weierstrass-p');
DefMathI('\Re', undef,"\x{211C}", role=>'OPFUNCTION', meaning=>'real-part');
DefMathI('\Im', undef,"\x{2111}", role=>'OPFUNCTION', meaning=>'imaginary-part');
DefMathI('\mho', undef,"\x{2127}");
DefMathI('\prime', undef,"\x{2032}", role=>'SUPOP', locked=>1);
DefMathI('\emptyset', undef,"\x{2205}", role=>'ID', meaning=>'empty-set');
DefMathI('\nabla', undef,"\x{2207}", role=>'OPERATOR');
DefMathI('\surd', undef,"\x{221A}", role=>'OPERATOR', meaning=>'square-root');
DefMathI('\top', undef,"\x{22A4}", role=>'ADDOP', meaning=>'top');
DefMathI('\bot', undef,"\x{22A5}", role=>'ADDOP', meaning=>'bottom');
DefMathI('\|', undef,"\x{2225}", role=>'VERTBAR', name=>'||', meaning=>'parallel-to');
DefMathI('\angle', undef,"\x{2220}");
DefMathI('\forall', undef,"\x{2200}", role=>'BIGOP', meaning=>'for-all');
DefMathI('\exists', undef,"\x{2203}", role=>'BIGOP', meaning=>'exists');
DefMathI('\neg', undef,UTF(0xAC), role=>'FUNCTION', meaning=>'not');
DefMathI('\lnot', undef,UTF(0xAC), role=>'FUNCTION', meaning=>'not');
DefMathI('\flat', undef,"\x{266D}");
DefMathI('\natural', undef,"\x{266E}");
DefMathI('\sharp', undef,"\x{266F}");
DefMathI('\backslash',undef,UTF(0x5C), role=>'MULOP');
DefMathI('\partial', undef,"\x{2202}", role=>'OPERATOR', meaning=>'partial-differential');
DefMathI('\infty', undef,"\x{221E}", role=>'ID', meaning=>'infinity');
DefMathI('\Box', undef,"\x{25A1}");
DefMathI('\Diamond', undef,"\x{25C7}");
DefMathI('\triangle', undef,"\x{25B3}");
DefMathI('\clubsuit', undef,"\x{2663}");
DefMathI('\diamondsuit',undef,"\x{2662}");
DefMathI('\heartsuit',undef,"\x{2661}");
DefMathI('\spadesuit',undef,"\x{2660}");
DefMath('\smallint',"\x{222B}", meaning=>'integral', role=>'INTOP',
DefMathI('\sum', undef,"\x{2211}", role=>'SUMOP',
DefMathI('\prod', undef,"\x{220F}", role=>'SUMOP',
DefMathI('\coprod', undef,"\x{2210}", role=>'SUMOP',
DefMathI('\int', undef,"\x{222B}", role=>'INTOP',
DefMathI('\oint', undef,"\x{222E}", role=>'INTOP',
DefMathI('\bigcap', undef,"\x{22C2}", role=>'SUMOP',
DefMathI('\bigcup', undef,"\x{22C3}", role=>'SUMOP',
DefMathI('\bigsqcup', undef,"\x{2294}", role=>'SUMOP',
DefMathI('\bigvee', undef,"\x{22C1}", role=>'SUMOP',
DefMathI('\bigwedge', undef,"\x{22C0}", role=>'SUMOP',
DefMathI('\bigodot', undef,"\x{2299}", role=>'SUMOP',
DefMathI('\bigotimes',undef,"\x{2297}", role=>'SUMOP',
DefMathI('\bigoplus', undef,"\x{2295}", role=>'SUMOP',
DefMathI('\biguplus', undef,"\x{228C}", role=>'SUMOP',
DefMathI('\pm', undef,UTF(0xB1), role=>'ADDOP', meaning=>'plus-or-minus');
DefMathI('\mp', undef,"\x{2213}", role=>'ADDOP', meaning=>'minus-or-plus');
DefMathI('\times', undef,UTF(0xD7), role=>'MULOP', meaning=>'times');
DefMathI('\div', undef,UTF(0xF7), role=>'MULOP', meaning=>'divide');
DefMathI('\ast', undef,"\x{2217}", role=>'MULOP');
DefMathI('\star', undef,"\x{22C6}", role=>'MULOP');
DefMathI('\circ', undef,"\x{2218}", role=>'MULOP', meaning=>'compose');
DefMathI('\bullet', undef,"\x{2219}", role=>'MULOP');
DefMathI('\cdot', undef,"\x{22C5}", role=>'MULOP');
DefMathI('\cap', undef,"\x{2229}", role=>'ADDOP', meaning=>'intersection');
DefMathI('\cup', undef,"\x{222A}", role=>'ADDOP', meaning=>'union');
DefMathI('\uplus', undef,"\x{228C}", role=>'ADDOP');
DefMathI('\sqcap', undef,"\x{2293}", role=>'ADDOP', meaning=>'square-intersection');
DefMathI('\sqcup', undef,"\x{2294}", role=>'ADDOP', meaning=>'square-union');
DefMathI('\vee', undef,"\x{2228}", role=>'ADDOP', meaning=>'or');
DefMathI('\lor', undef,"\x{2228}", role=>'ADDOP', meaning=>'or');
DefMathI('\wedge', undef,"\x{2227}", role=>'ADDOP', meaning=>'and');
DefMathI('\land', undef,"\x{2227}", role=>'ADDOP', meaning=>'and');
DefMathI('\setminus', undef,"\x{2216}", role=>'ADDOP', meaning=>'set-minus');
DefMathI('\wr', undef,"\x{2240}", role=>'MULOP');
DefMathI('\diamond', undef,"\x{22C4}", role=>'ADDOP');
DefMathI('\bigtriangleup', undef,"\x{25B3}", role=>'ADDOP');
DefMathI('\bigtriangledown',undef,"\x{25BD}", role=>'ADDOP');
DefMathI('\triangleleft', undef,"\x{25C1}", role=>'ADDOP');
DefMathI('\triangleright', undef,"\x{25B7}", role=>'ADDOP');
DefMathI('\lhd', undef,"\x{22B2}", role=>'ADDOP', meaning=>'subgroup-of');
DefMathI('\rhd', undef,"\x{22B3}", role=>'ADDOP', meaning=>'contains-as-subgroup');
DefMathI('\unlhd', undef,"\x{22B4}", role=>'ADDOP', meaning=>'subgroup-of-or-equals');
DefMathI('\unrhd', undef,"\x{22B5}", role=>'ADDOP', meaning=>'contains-as-subgroup-or-equals');
DefMathI('\oplus', undef,"\x{2295}", role=>'ADDOP', meaning=>'direct-sum');
DefMathI('\ominus', undef,"\x{2296}", role=>'ADDOP', meaning=>'symmetric-difference');
DefMathI('\otimes', undef,"\x{2297}", role=>'MULOP', meaning=>'tensor-product');
DefMathI('\oslash', undef,"\x{2298}", role=>'MULOP');
DefMathI('\odot', undef,"\x{2299}", role=>'MULOP', meaning=>'direct-product');
DefMathI('\bigcirc', undef,"\x{25CB}", role=>'MULOP');
DefMathI('\dagger', undef,"\x{2020}", role=>'MULOP');
DefMathI('\ddagger', undef,"\x{2021}", role=>'MULOP');
DefMathI('\amalg', undef,"\x{2210}", role=>'MULOP', meaning=>'coproduct');
DefMathI('\leq', undef,"\x{2264}", role=>'RELOP', meaning=>'less-than-or-equals');
DefMathI('\prec', undef,"\x{227A}", role=>'RELOP', meaning=>'precedes');
DefMathI('\preceq', undef,"\x{2AAF}", role=>'RELOP', meaning=>'precedes-or-equals');
DefMathI('\ll', undef,"\x{226A}", role=>'RELOP', meaning=>'much-less-than');
DefMathI('\subset', undef,"\x{2282}", role=>'RELOP', meaning=>'subset-of');
DefMathI('\subseteq', undef,"\x{2286}", role=>'RELOP', meaning=>'subset-of-or-equals');
DefMathI('\sqsubset', undef,"\x{228F}", role=>'RELOP', meaning=>'square-image-of');
DefMathI('\sqsubseteq',undef,"\x{2291}", role=>'RELOP', meaning=>'square-image-of-or-equals');
DefMathI('\in', undef,"\x{2208}", role=>'RELOP', meaning=>'element-of');
DefMathI('\vdash', undef,"\x{22A2}", role=>'METARELOP', meaning=>'proves');
DefMathI('\geq', undef,"\x{2265}", role=>'RELOP', meaning=>'greater-than-or-equals');
DefMathI('\succ', undef,"\x{227B}", role=>'RELOP', meaning=>'succeeds');
DefMathI('\succeq', undef,"\x{2AB0}", role=>'RELOP', meaning=>'succeeds-or-equals');
DefMathI('\gg', undef,"\x{226B}", role=>'RELOP', meaning=>'much-greater-than');
DefMathI('\supset', undef,"\x{2283}", role=>'RELOP', meaning=>'superset-of');
DefMathI('\supseteq', undef,"\x{2287}", role=>'RELOP', meaning=>'superset-of-or-equals');
DefMathI('\sqsupset', undef,"\x{2290}", role=>'RELOP', meaning=>'square-original-of');
DefMathI('\sqsupseteq',undef,"\x{2292}", role=>'RELOP', meaning=>'square-original-of-or-equals');
DefMathI('\ni', undef,"\x{220B}", role=>'RELOP', meaning=>'contains');
DefMathI('\dashv', undef,"\x{22A3}", role=>'METARELOP', meaning=>'does-not-prove');
DefMathI('\equiv', undef,"\x{2261}", role=>'RELOP', meaning=>'equivalent-to');
DefMathI('\sim', undef,"\x{223C}", role=>'RELOP', meaning=>'similar-to');
DefMathI('\simeq', undef,"\x{2243}", role=>'RELOP', meaning=>'similar-to-or-equals');
DefMathI('\asymp', undef,"\x{224D}", role=>'RELOP', meaning=>'asymptotically-equals');
DefMathI('\approx', undef,"\x{2248}", role=>'RELOP', meaning=>'approximately-equals');
DefMathI('\cong', undef,"\x{2245}", role=>'RELOP', meaning=>'approximately-equals');
DefMathI('\neq', undef,"\x{2260}", role=>'RELOP', meaning=>'not-equals');
DefMathI('\doteq', undef,"\x{2250}", role=>'RELOP', meaning=>'approaches-limit');
DefMathI('\notin', undef,"\x{2209}", role=>'RELOP', meaning=>'not-element-of');
DefMathI('\models', undef,"\x{22A7}", role=>'RELOP', meaning=>'models');
DefMathI('\perp', undef,"\x{27C2}", role=>'RELOP', meaning=>'perpendicular-to');
DefMathI('\mid', undef,"\x{2223}", role=>'VERTBAR'); # DIVIDES (RELOP?) ?? well, sometimes...
DefMathI('\parallel', undef,"\x{2225}", role=>'VERTBAR', meaning=>'parallel-to');
DefMathI('\bowtie', undef,"\x{22C8}", role=>'RELOP'); # BOWTIE
DefMathI('\Join', undef,"\x{2A1D}", role=>'RELOP', meaning=>'join');
DefMathI('\smile', undef,"\x{2323}", role=>'RELOP'); # SMILE
DefMathI('\frown', undef,"\x{2322}", role=>'RELOP'); # FROWN
DefMathI('\propto', undef,"\x{221D}", role=>'RELOP', meaning=>'proportional-to');
DefMathI('\not',undef,"\x{FF0F}", role=>'OPFUNCTION', meaning=>'not');
DefMathI('\relbar',undef, "-", role=>'RELOP'); # ???
DefMathI('\Relbar',undef, "=", role=>'RELOP'); # ???
DefMathI('\leftarrow', undef,"\x{2190}", role=>'ARROW'); # LEFTWARDS ARROW
DefMathI('\Leftarrow', undef,"\x{21D0}", role=>'ARROW'); # LEFTWARDS DOUBLE ARROW
DefMathI('\rightarrow', undef,"\x{2192}", role=>'ARROW'); # RIGHTWARDS ARROW
DefMathI('\Rightarrow', undef,"\x{21D2}", role=>'ARROW'); # RIGHTWARDS DOUBLE ARROW
DefMathI('\leftrightarrow', undef,"\x{2194}", role=>'METARELOP'); # LEFT RIGHT ARROW
DefMathI('\Leftrightarrow', undef,"\x{21D4}", role=>'METARELOP'); # LEFT RIGHT DOUBLE ARROW
DefMathI('\iff', undef,"\x{21D4}", role=>'METARELOP', meaning=>'iff'); # LEFT RIGHT DOUBLE ARROW
DefMathI('\mapsto', undef,"\x{21A6}", role=>'ARROW', meaning=>'maps-to');
DefMathI('\hookleftarrow', undef,"\x{21A9}", role=>'ARROW'); # LEFTWARDS ARROW WITH HOOK
DefMathI('\leftharpoonup', undef,"\x{21BC}", role=>'ARROW'); # LEFTWARDS HARPOON WITH BARB UPWARDS
DefMathI('\leftharpoondown', undef,"\x{21BD}", role=>'ARROW'); # LEFTWARDS HARPOON WITH BARB DOWNWARDS
DefMathI('\rightleftharpoons', undef,"\x{21CC}", role=>'METARELOP'); # RIGHTWARDS HARPOON OVER LEFTWARDS HARPOON
DefMathI('\longleftarrow', undef,"\x{27F5}", role=>'ARROW'); # LONG LEFTWARDS ARROW
DefMathI('\Longleftarrow', undef,"\x{27F8}", role=>'ARROW'); # LONG LEFTWARDS DOUBLE ARROW
DefMathI('\longrightarrow', undef,"\x{27F6}", role=>'ARROW'); # LONG RIGHTWARDS ARROW
DefMathI('\Longrightarrow', undef,"\x{27F9}", role=>'ARROW'); # LONG RIGHTWARDS DOUBLE ARROW
DefMathI('\longleftrightarrow',undef,"\x{27F7}", role=>'METARELOP'); # LONG LEFT RIGHT ARROW
DefMathI('\Longleftrightarrow',undef,"\x{27FA}", role=>'METARELOP'); # LONG LEFT RIGHT DOUBLE ARROW
DefMathI('\longmapsto', undef,"\x{27FC}", role=>'ARROW'); # LONG RIGHTWARDS ARROW FROM BAR
DefMathI('\hookrightarrow', undef,"\x{21AA}", role=>'ARROW'); # RIGHTWARDS ARROW WITH HOOK
DefMathI('\rightharpoonup', undef,"\x{21C0}", role=>'ARROW'); # RIGHTWARDS HARPOON WITH BARB UPWARDS
DefMathI('\rightharpoondown', undef,"\x{21C1}", role=>'ARROW'); # RIGHTWARDS HARPOON WITH BARB DOWNWARDS
DefMathI('\leadsto', undef,"\x{219D}", role=>'ARROW', meaning=>'leads-to');
DefMathI('\uparrow', undef,"\x{2191}", role=>'ARROW'); # UPWARDS ARROW
DefMathI('\Uparrow', undef,"\x{21D1}", role=>'ARROW'); # UPWARDS DOUBLE ARROW
DefMathI('\downarrow', undef,"\x{2193}", role=>'ARROW'); # DOWNWARDS ARROW
DefMathI('\Downarrow', undef,"\x{21D3}", role=>'ARROW'); # DOWNWARDS DOUBLE ARROW
DefMathI('\updownarrow', undef,"\x{2195}", role=>'ARROW'); # UP DOWN ARROW
DefMathI('\Updownarrow', undef,"\x{21D5}", role=>'ARROW'); # UP DOWN DOUBLE ARROW
DefMathI('\nearrow', undef,"\x{2197}", role=>'ARROW'); # NORTH EAST ARROW
DefMathI('\searrow', undef,"\x{2198}", role=>'ARROW'); # SOUTH EAST ARROW
DefMathI('\swarrow', undef,"\x{2199}", role=>'ARROW'); # SOUTH WEST ARROW
DefMathI('\nwarrow', undef,"\x{2196}", role=>'ARROW'); # NORTH WEST ARROW
DefMathI('\mapstochar', undef,"\x{2E20}"); # TeX 3237
DefMathI('\lhook', undef,"\x{2E26}"); # TeX 312C
DefMathI('\rhook', undef,"\x{2E27}"); # TeX 312D
DefMathI('\cdots',undef,"\x{22EF}", role=>'ID'); # MIDLINE HORIZONTAL ELLIPSIS
DefMathI('\ddots',undef,"\x{22F1}", role=>'ID'); # DOWN RIGHT DIAGONAL ELLIPSIS
DefMathI('\colon',undef,':', role=>'METARELOP'); # Seems like good default role
properties=>{font=>sub{ LookupValue('font')->merge(family=>'serif');}} ); # Since not DefMath!
DefMath('\hat Digested', UTF(0x5E), operator_role=>'OVERACCENT');
DefMath('\check Digested', "\x{02C7}", operator_role=>'OVERACCENT'); # CARON
DefMath('\breve Digested', "\x{02D8}", operator_role=>'OVERACCENT'); # BREVE
DefMath('\acute Digested', UTF(0xB4), operator_role=>'OVERACCENT'); # ACUTE ACCENT
DefMath('\grave Digested', UTF(0x60), operator_role=>'OVERACCENT'); # GRAVE ACCENT
DefMath('\tilde Digested', UTF(0x7E), operator_role=>'OVERACCENT'); # TILDE
DefMath('\bar Digested', UTF(0xAF), operator_role=>'OVERACCENT'); # MACRON
DefMath('\vec Digested', "\x{2192}", operator_role=>'OVERACCENT'); # RIGHTWARDS ARROW
DefMath('\dot Digested', "\x{02D9}", operator_role=>'OVERACCENT'); # DOT ABOVE
DefMath('\ddot Digested', UTF(0xA8), operator_role=>'OVERACCENT'); # DIAERESIS
DefMath('\overline Digested', UTF(0xAF), operator_role=>'OVERACCENT'); # MACRON
DefMath('\overbrace Digested', "\x{FE37}", operator_role=>'OVERACCENT', # PRESENTATION FORM FOR VERTICAL LEFT CURLY BRACKET
DefMath('\widehat Digested', UTF(0x5E), operator_role=>'OVERACCENT'); # CIRCUMFLEX ACCENT [plain? also amsfonts]
DefMath('\widetilde Digested', UTF(0x7E), operator_role=>'OVERACCENT'); # TILDE [plain? also amsfonts]
DefMath('\underbrace Digested',"\x{FE38}", operator_role=>'UNDERACCENT', # PRESENTATION FORM FOR VERTICAL RIGHT CURLY BRACKET
DefMath('\math@underline{}', UTF(0xAF), operator_role=>'UNDERACCENT',
DefMath('\math@overrightarrow{}', "\x{2192}", operator_role=>'OVERACCENT',
DefMath('\math@overleftarrow{}', "\x{2190}", operator_role=>'OVERACCENT',
properties=>{font=>sub{ LookupValue('font')->specialize("{");}}); # Since not DefMath!
properties=>{font=>sub{ LookupValue('font')->specialize("}");}}); # Since not DefMath!
DefMathI('\lceil', undef,"\x{2308}", role=>'OPEN'); # LEFT CEILING
DefMathI('\rceil', undef,"\x{2309}", role=>'CLOSE'); # RIGHT CEILING
DefMathI('\lfloor', undef,"\x{230A}", role=>'OPEN'); # LEFT FLOOR
DefMathI('\rfloor', undef,"\x{230B}", role=>'CLOSE'); # RIGHT FLOOR
DefMathI('\langle', undef,"\x{27E8}", role=>'OPEN'); # LEFT-POINTING ANGLE BRACKET
DefMathI('\rangle', undef,"\x{27E9}", role=>'CLOSE'); # RIGHT-POINTING ANGLE BRACKET
DefMathI('\lgroup', undef,"(", font=>{series=>'bold'}, role=>'OPEN');
DefMathI('\rgroup', undef,")", font=>{series=>'bold'}, role=>'CLOSE');
DefMathI('\bracevert', undef, "|", font=>{series=>'bold'}, role=>'VERTBAR');
DefMathI('\arccos', undef,"arccos", role=>'OPFUNCTION', meaning=>'inverse-cosine');
DefMathI('\arcsin', undef,"arcsin", role=>'OPFUNCTION', meaning=>'inverse-sine');
DefMathI('\arctan', undef,"arctan", role=>'OPFUNCTION', meaning=>'inverse-tangent');
DefMathI('\arg', undef,"arg", role=>'OPFUNCTION', meaning=>'argument');
DefMathI('\cos', undef,"cos", role=>'TRIGFUNCTION', meaning=>'cosine');
DefMathI('\cosh', undef,"cosh", role=>'TRIGFUNCTION', meaning=>'hyperbolic-cosine');
DefMathI('\cot', undef,"cot", role=>'TRIGFUNCTION', meaning=>'cotangent');
DefMathI('\coth', undef,"coth", role=>'TRIGFUNCTION', meaning=>'hyperbolic-cotangent');
DefMathI('\csc', undef,"csc", role=>'TRIGFUNCTION', meaning=>'cosecant');
DefMathI('\deg', undef,"deg", role=>'OPFUNCTION', meaning=>'degree');
DefMathI('\det', undef,"det", role=>'LIMITOP', meaning=>'determinant',
DefMathI('\dim', undef,"dim", role=>'LIMITOP', meaning=>'dimension');
DefMathI('\exp', undef,"exp", role=>'OPFUNCTION', meaning=>'exponential');
DefMathI('\gcd', undef,"gcd", role=>'OPFUNCTION', meaning=>'gcd',
DefMathI('\hom', undef,"hom", role=>'OPFUNCTION');
DefMathI('\inf', undef,"inf", role=>'LIMITOP', meaning=>'infimum',
DefMathI('\ker', undef,"ker", role=>'OPFUNCTION', meaning=>'kernel');
DefMathI('\lg', undef,"lg", role=>'OPFUNCTION');
DefMathI('\lim', undef,"lim", role=>'LIMITOP', meaning=>'limit',
DefMathI('\liminf', undef,"lim inf", role=>'LIMITOP', meaning=>'limit-infimum',
DefMathI('\limsup', undef,"lim sup", role=>'LIMITOP', meaning=>'limit-supremum',
DefMathI('\ln', undef,"ln", role=>'OPFUNCTION', meaning=>'natural-logarithm');
DefMathI('\log', undef,"log", role=>'OPFUNCTION', meaning=>'logarithm');
DefMathI('\max', undef,"max", role=>'LIMITOP', meaning=>'maximum',
DefMathI('\min', undef,"min", role=>'LIMITOP', meaning=>'minimum',
DefMathI('\Pr', undef,"Pr", role=>'OPFUNCTION', scriptpos=>\&doScriptpos);
DefMathI('\sec', undef,"sec", role=>'TRIGFUNCTION', meaning=>'secant');
DefMathI('\sin', undef,"sin", role=>'TRIGFUNCTION', meaning=>'sine');
DefMathI('\sinh', undef,"sinh", role=>'TRIGFUNCTION', meaning=>'hyperbolic-sine');
DefMathI('\sup', undef,"sup", role=>'LIMITOP', meaning=>'supremum',
DefMathI('\tan', undef,"tan", role=>'TRIGFUNCTION', meaning=>'tangent');
DefMathI('\tanh', undef,"tanh", role=>'TRIGFUNCTION', meaning=>'hyperbolic-tangent');
DefMath('\pmod{}', '\;\;(\mathop{{\rm mod}} #1)', role=>'MODIFIER'); # , meaning=>'modulo');
DefMath('\bmod', 'mod', role=>'MODIFIEROP', meaning=>'modulo');
DefMathI('\*',undef,"\x{2062}", role=>'MULOP', name=>'', meaning=>'times'); # INVISIBLE TIMES (or MULTIPLICATION SIGN = 00D7)
DefMathI('\to',undef,"\x{2192}", role=>'ARROW'); # RIGHTWARDS ARROW??? a bit more explicitly relation-like?
DefMathI('\@APPLYFUNCTION', undef, "\x{2061}", reversion=>'', name=>'', role=>'APPLYOP');
DefMathI('\@INVISIBLETIMES',undef, "\x{2062}", reversion=>'', name=>'', meaning=>'times', role=>'MULOP');
DefMathI('\@INVISIBLECOMMA',undef, "\x{2063}", reversion=>'', name=>'', role=>'PUNCT');
DefMath('\mathsterling',UTF(0xA3)); # POUND SIGN
DefMath('\@cd@equals@', "=", role=>'ARROW', font=>{size=>'stretchy'}, reversion=>'@=');
DefMath('\@cd@bar@', "|", role=>'ARROW',font=>{size=>'Big'}, reversion=>'@|');
DefMath('\@cd@vert@', "\x{2225}", role=>'ARROW',font=>{size=>'Big'}, reversion=>'@\vert');
DefMath('\leftarrowfill@', "\x{2190}", role=>'ARROW', font=>{size=>'stretchy'});
DefMath('\rightarrowfill@', "\x{2192}", role=>'ARROW', font=>{size=>'stretchy'});
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment