Skip to content

Instantly share code, notes, and snippets.

@dginev
Created August 19, 2021 18:16
Show Gist options
  • Save dginev/bd2da72b753c8bcf798f7f04465b6aba to your computer and use it in GitHub Desktop.
Save dginev/bd2da72b753c8bcf798f7f04465b6aba to your computer and use it in GitHub Desktop.
LD+JSON from cuemath.com/algebra/quadratic-equations/
{
"@context": "https://schema.org/",
"@type": "Quiz",
"url": "https://www.cuemath.com/algebra/quadratic-equations/",
"typicalAgeRange": "3-19",
"educationalLevel": "primary",
"assesses": "Attend this Quiz & Test your knowledge.",
"educationalAlignment": [
{
"@type": "AlignmentObject",
"alignmentType": "educationalSubject",
"targetName": "Maths"
},
{
"@type": "AlignmentObject",
"alignmentType": "educationalSubject",
"targetName": "Quadratic Equation"
}
],
"name": "Quiz About Quadratic Equation",
"about": {
"@type": "Thing",
"name": "Quadratic Equation"
},
"hasPart": [
{
"@type": "Question",
"eduQuestionType": "Multiple choice",
"learningResourceType": "Practice problem",
"name": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$",
"comment": {
"@type": "Comment",
"text": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$"
},
"text": "Which of the following are the roots of the equation $$2y<sup>2</sup> + 2 = 5y $$?",
"encodingFormat": "text/html",
"suggestedAnswer": [
{
"@type": "Answer",
"position": 0,
"encodingFormat": "text/html",
"text": "$$y = -½, 2$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 1,
"encodingFormat": "text/html",
"text": "$$y = ½, -2$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 3,
"encodingFormat": "text/html",
"text": "$$y = -½, -2$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
}
],
"acceptedAnswer": {
"@type": "Answer",
"position": 2,
"encodingFormat": "text/html",
"text": "$$y = ½ , 2$$",
"comment": {
"@type": "Comment",
"text": "Option C is correct"
},
"answerExplanation": {
"@type": "Comment",
"text": "Correct Answer is $$ y = ½ , 2$$"
}
}
},
{
"@type": "Question",
"eduQuestionType": "Multiple choice",
"learningResourceType": "Practice problem",
"name": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$",
"comment": {
"@type": "Comment",
"text": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$"
},
"text": "What is the value of the constant ‘c’ when the quadratic equation $$x - 1/x = 3$$ is expressed in its standard form?",
"encodingFormat": "text/html",
"suggestedAnswer": [
{
"@type": "Answer",
"position": 0,
"encodingFormat": "text/html",
"text": "$$-3$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 1,
"encodingFormat": "text/html",
"text": "3",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 3,
"encodingFormat": "text/html",
"text": "1",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
}
],
"acceptedAnswer": {
"@type": "Answer",
"position": 2,
"encodingFormat": "text/html",
"text": "$$-1$$",
"comment": {
"@type": "Comment",
"text": "Option C is correct"
},
"answerExplanation": {
"@type": "Comment",
"text": "Correct Answer is $$-1$$"
}
}
},
{
"@type": "Question",
"eduQuestionType": "Multiple choice",
"learningResourceType": "Practice problem",
"name": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$",
"comment": {
"@type": "Comment",
"text": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$"
},
"text": "The discriminant of the quadratic equation y<sup>2</sup> - 6y + 4 = 0 is:",
"encodingFormat": "text/html",
"suggestedAnswer": [
{
"@type": "Answer",
"position": 0,
"encodingFormat": "text/html",
"text": "30",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 1,
"encodingFormat": "text/html",
"text": "10",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 3,
"encodingFormat": "text/html",
"text": "$$-20$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
}
],
"acceptedAnswer": {
"@type": "Answer",
"position": 2,
"encodingFormat": "text/html",
"text": "20",
"comment": {
"@type": "Comment",
"text": "Option C is correct"
},
"answerExplanation": {
"@type": "Comment",
"text": "Correct Answer is 20"
}
}
},
{
"@type": "Question",
"eduQuestionType": "Multiple choice",
"learningResourceType": "Practice problem",
"name": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$",
"comment": {
"@type": "Comment",
"text": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$"
},
"text": "For what value of m does the quadratic equation mx<sup>2</sup> + 2x + 1 = 0 has real and distinct roots?",
"encodingFormat": "text/html",
"suggestedAnswer": [
{
"@type": "Answer",
"position": 0,
"encodingFormat": "text/html",
"text": "$$m > 1$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 1,
"encodingFormat": "text/html",
"text": "$$m ≤ 1$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 3,
"encodingFormat": "text/html",
"text": "$$m ≥ 1$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
}
],
"acceptedAnswer": {
"@type": "Answer",
"position": 2,
"encodingFormat": "text/html",
"text": "$$m < 1$$",
"comment": {
"@type": "Comment",
"text": "Option C is correct"
},
"answerExplanation": {
"@type": "Comment",
"text": "Correct Answer is $$m < 1$$"
}
}
},
{
"@type": "Question",
"eduQuestionType": "Multiple choice",
"learningResourceType": "Practice problem",
"name": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$",
"comment": {
"@type": "Comment",
"text": "Quadratic Equations are second-degree polynomials which are expressed in the form of $$ax<sup>2</sup> + bx + c = 0.$$ The quadratic formula to determine the roots is $$(-b ± √(b<sup>2</sup>-4ac))/2a$$"
},
"text": "The sum and product of the roots of the quadratic equation $$2x<sup>2</sup> + 3x + 1$$ is ",
"encodingFormat": "text/html",
"suggestedAnswer": [
{
"@type": "Answer",
"position": 0,
"encodingFormat": "text/html",
"text": "$$-1/2, -3/2$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 1,
"encodingFormat": "text/html",
"text": "$$3/2, 1/2$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
},
{
"@type": "Answer",
"position": 3,
"encodingFormat": "text/html",
"text": "$$-1/2, 3/2$$",
"comment": {
"@type": "Comment",
"text": "It is wrong Option"
}
}
],
"acceptedAnswer": {
"@type": "Answer",
"position": 2,
"encodingFormat": "text/html",
"text": "$$-3/2, 1/2$$",
"comment": {
"@type": "Comment",
"text": "Option C is correct"
},
"answerExplanation": {
"@type": "Comment",
"text": "Correct Answer is $$-3/2, 1/2$$"
}
}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment