Last active
March 24, 2019 03:34
-
-
Save dginev/e50a632d31be05bb87d64cc1800f6fd4 to your computer and use it in GitHub Desktop.
arXMLiv 08.2018, MathML element report
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env perl | |
# Applies cutoffs to the very noisy 250 MB mathml_statistics.txt | |
# which was generated by llamapun over arXMLiv 08.2018. | |
# | |
# It rewrites to a CSV file, throwing out all known erroneous markup, including: | |
# - discard all SVG-associated markup (wrongly in MathML) | |
# - discard all (non-math) HTML-associated markup (wrongly in MathML) | |
# - discard all XMath-associated markup (wrongly in MathML) | |
# - less noisy for uninteresting values (numbers with known units, hex colors, open-ended id schemes, etc) | |
# | |
# And computes the ratios of elements when compared to the number of all <math> elements reported. | |
use warnings; | |
use strict; | |
use Data::Dumper; | |
open my $fh, "<", "mathml_statistics.txt"; | |
open my $pres_fh, ">", "pmml_cutoffs.csv"; | |
open my $content_fh, ">", "cmml_cutoffs.csv"; | |
print $pres_fh "name\@attr\[value\], relative %, frequency\n"; | |
print $content_fh "name\@attr\[value\], relative %, frequency\n"; | |
my %discarded = (); | |
my @kept = (); | |
my $math_count = 0; | |
for my $line (<$fh>) { | |
if ($line =~ /^(?:(:?sv)?g|rect|path|circle|foreignobject|marker|ellipse|object|use|fe(flood|merge(node)?)|pattern|text|radialgradient|stop|filter|clippath|lineargradient|switch|defs)(\@|\s)/) { | |
$discarded{"svg-variety"} = 1 + ($discarded{"svg-variety"} || 0); | |
} elsif ($line =~ /^xm/) { | |
$discarded{"xmath-variety"} = 1 + ($discarded{"xmath-variety"} || 0); | |
} elsif ($line =~ /^(div|span|img|a|th|td|tr|table|tbody|thead|tfoot|section|code|br|su[pb]|p|h\d|abbr|cite|figure|[uo]l|del|li|d[ldt]|blockquote|figcaption|pre)(\@|\s)/) { | |
$discarded{"html-variety"} = 1 + ($discarded{"html-variety"} || 0); | |
} elsif ($line =~ /math\@style\[background\-color:#/ || $line=~ /(style|color)\[\#/) { | |
my $key = "hex-color"; | |
$discarded{$key} = 1 + ($discarded{$key} || 0); | |
} elsif ($line =~ /\@(fragid|idref|math(?:color|background))\[/) { | |
my $key = "\@$1\["; | |
$discarded{$key} = 1 + ($discarded{$key} || 0); | |
} elsif ($line =~ /((?:p[tx]|ex|%)\])\s/) { # discard attr values with known units | |
$discarded{$1} = 1 + ($discarded{$1} || 0); | |
} elsif ($line =~ /^document_count\s(\d+)/) { | |
print STDERR "Document count: $1\n"; | |
} elsif ($line =~ /^math\s(\d+)/) { | |
$math_count = int($1) * 1.0; | |
} else { # keep the rest | |
push(@kept, $line); | |
} | |
} | |
for my $line(@kept) { | |
my ($k,$v) = split(/\s+/,$line); | |
my $ratio = sprintf('%.2f',(int($v)* 100.0) / $math_count); | |
my $csv_row = "$k, $ratio, $v\n"; | |
if ($k =~ /^m/ && $k ne 'minus') { | |
print $pres_fh $csv_row; | |
} else { | |
print $content_fh $csv_row; | |
} | |
} | |
close $fh; | |
close $pres_fh; | |
close $content_fh; | |
$Data::Dumper::Sortkeys = sub { | |
# Using <=> to sort numeric values | |
[ sort { $_[0]->{$b} <=> $_[0]->{$a} } keys %{ $_[0] } ] | |
}; | |
print Dumper(\%discarded); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name@attr[value] | relative % | frequency | |
---|---|---|---|
ci | 387.75 | 2160469091 | |
ci@id | 387.66 | 2159951670 | |
ci@xref | 387.66 | 2159943207 | |
apply | 368.41 | 2052670002 | |
apply@id | 368.33 | 2052265456 | |
apply@xref | 367.70 | 2048724676 | |
annotation | 199.51 | 1111608264 | |
annotation@encoding | 199.51 | 1111608264 | |
annotation@id | 199.39 | 1110950102 | |
csymbol | 186.98 | 1041814437 | |
csymbol@cd | 186.98 | 1041814437 | |
csymbol@id | 186.95 | 1041627267 | |
csymbol@xref | 184.66 | 1028910441 | |
csymbol@cd[ambiguous] | 157.76 | 879011186 | |
cn@type | 109.34 | 609207850 | |
cn | 109.34 | 609207850 | |
cn@id | 109.31 | 609051810 | |
cn@xref | 109.31 | 609049475 | |
cn@type[integer] | 103.27 | 575384902 | |
semantics | 100.00 | 557177013 | |
annotation-xml@encoding | 100.00 | 557177012 | |
annotation-xml@encoding[MathML-Content] | 100.00 | 557177012 | |
annotation-xml | 100.00 | 557177012 | |
semantics@id | 99.94 | 556845702 | |
annotation-xml@id | 99.94 | 556845701 | |
annotation@encoding[application/x-llamapun] | 99.87 | 556475304 | |
times | 75.91 | 422962021 | |
times@id | 75.89 | 422868594 | |
times@xref | 75.76 | 422135012 | |
eq | 25.05 | 139567082 | |
eq@id | 25.04 | 139538280 | |
eq@xref | 25.04 | 139538266 | |
minus | 24.23 | 134984209 | |
csymbol@cd[latexml] | 22.07 | 122964280 | |
divide | 16.60 | 92492689 | |
divide@id | 16.60 | 92482172 | |
divide@xref | 16.60 | 92482146 | |
plus | 15.69 | 87435740 | |
plus@id | 15.69 | 87400141 | |
plus@xref | 15.69 | 87400127 | |
list | 8.65 | 48212997 | |
list@id | 8.65 | 48201859 | |
list@xref | 8.65 | 48168331 | |
interval@closure | 8.09 | 45082969 | |
interval | 8.09 | 45082969 | |
interval@id | 8.09 | 45072755 | |
interval@xref | 8.08 | 44992527 | |
cerror | 8.05 | 44844172 | |
cerror@id | 8.05 | 44841076 | |
csymbol@cd[unknown] | 7.15 | 39838971 | |
interval@closure[open] | 6.89 | 38384717 | |
cerror@xref | 6.08 | 33865158 | |
cn@type[float] | 6.07 | 33822948 | |
in | 5.22 | 29106896 | |
in@id | 5.22 | 29106106 | |
in@xref | 5.22 | 29106099 | |
share | 4.43 | 24674894 | |
share@href | 4.43 | 24672419 | |
share@id | 4.43 | 24672419 | |
share@xref | 4.42 | 24612627 | |
and | 3.95 | 22016592 | |
and@id | 3.95 | 22010840 | |
and@xref | 3.94 | 21965628 | |
leq | 3.18 | 17699297 | |
leq@id | 3.18 | 17697962 | |
leq@xref | 3.18 | 17697954 | |
abs | 3.08 | 17136749 | |
abs@id | 3.08 | 17135260 | |
abs@xref | 3.07 | 17107595 | |
partialdiff | 2.67 | 14871219 | |
partialdiff@xref | 2.67 | 14870316 | |
partialdiff@id | 2.67 | 14870316 | |
sum | 2.53 | 14092144 | |
sum@id | 2.53 | 14092026 | |
sum@xref | 2.53 | 14092024 | |
lt | 2.19 | 12209590 | |
lt@id | 2.19 | 12206726 | |
lt@xref | 2.19 | 12206722 | |
infinity | 2.19 | 12194194 | |
infinity@id | 2.19 | 12190413 | |
infinity@xref | 2.19 | 12190409 | |
int | 1.98 | 11027118 | |
int@xref | 1.98 | 11026998 | |
int@id | 1.98 | 11026998 | |
vector | 1.91 | 10637187 | |
vector@id | 1.91 | 10635506 | |
vector@xref | 1.90 | 10608618 | |
gt | 1.82 | 10158543 | |
gt@id | 1.82 | 10156326 | |
gt@xref | 1.82 | 10156326 | |
root | 1.73 | 9623335 | |
root@id | 1.73 | 9622492 | |
root@xref | 1.73 | 9622472 | |
set | 1.70 | 9499594 | |
set@id | 1.70 | 9498866 | |
set@xref | 1.70 | 9486638 | |
geq | 1.64 | 9159256 | |
geq@id | 1.64 | 9157910 | |
geq@xref | 1.64 | 9157909 | |
none | 1.36 | 7585963 | |
none@id | 1.36 | 7582802 | |
none@xref | 1.36 | 7572366 | |
interval@closure[closed] | 1.03 | 5711630 | |
subset | 0.83 | 4606309 | |
subset@id | 0.83 | 4605995 | |
subset@xref | 0.83 | 4605894 | |
log | 0.75 | 4187549 | |
log@xref | 0.75 | 4187230 | |
log@id | 0.75 | 4187230 | |
approx | 0.65 | 3604861 | |
approx@id | 0.65 | 3604363 | |
approx@xref | 0.65 | 3604359 | |
compose | 0.64 | 3584938 | |
compose@xref | 0.64 | 3583524 | |
compose@id | 0.64 | 3583524 | |
neq | 0.64 | 3548622 | |
neq@id | 0.64 | 3547611 | |
neq@xref | 0.64 | 3547607 | |
equivalent | 0.57 | 3189718 | |
equivalent@id | 0.57 | 3189516 | |
equivalent@xref | 0.57 | 3189516 | |
intersect | 0.55 | 3048184 | |
intersect@id | 0.55 | 3048010 | |
intersect@xref | 0.55 | 3048010 | |
cos | 0.48 | 2673762 | |
cos@id | 0.48 | 2673585 | |
cos@xref | 0.48 | 2673585 | |
sin | 0.48 | 2668788 | |
sin@id | 0.48 | 2668556 | |
sin@xref | 0.48 | 2668556 | |
exp | 0.41 | 2289526 | |
exp@id | 0.41 | 2289444 | |
exp@xref | 0.41 | 2289444 | |
union | 0.39 | 2161615 | |
union@id | 0.39 | 2161545 | |
union@xref | 0.39 | 2161545 | |
ln | 0.37 | 2076890 | |
ln@id | 0.37 | 2076708 | |
ln@xref | 0.37 | 2076708 | |
setdiff | 0.30 | 1664224 | |
setdiff@id | 0.30 | 1664132 | |
setdiff@xref | 0.30 | 1664132 | |
factorial | 0.28 | 1565080 | |
factorial@xref | 0.28 | 1565025 | |
factorial@id | 0.28 | 1565025 | |
limit | 0.25 | 1412287 | |
limit@xref | 0.25 | 1412237 | |
limit@id | 0.25 | 1412237 | |
emptyset | 0.16 | 882058 | |
emptyset@id | 0.16 | 881975 | |
emptyset@xref | 0.16 | 881975 | |
or | 0.14 | 768367 | |
or@id | 0.14 | 768238 | |
or@xref | 0.14 | 768234 | |
interval@closure[closed-open] | 0.12 | 670011 | |
notin | 0.11 | 633176 | |
notin@id | 0.11 | 633136 | |
notin@xref | 0.11 | 633135 | |
determinant | 0.11 | 619228 | |
determinant@xref | 0.11 | 619172 | |
determinant@id | 0.11 | 619172 | |
tan | 0.08 | 431617 | |
tan@id | 0.08 | 431488 | |
tan@xref | 0.08 | 431488 | |
floor | 0.07 | 397597 | |
floor@id | 0.07 | 397585 | |
floor@xref | 0.07 | 397343 | |
sinh | 0.07 | 381487 | |
sinh@id | 0.07 | 381477 | |
sinh@xref | 0.07 | 381477 | |
cosh | 0.07 | 375707 | |
cosh@xref | 0.07 | 375685 | |
cosh@id | 0.07 | 375685 | |
not | 0.06 | 322263 | |
not@xref | 0.06 | 322211 | |
not@id | 0.06 | 322211 | |
interval@closure[open-closed] | 0.06 | 316611 | |
exists | 0.05 | 285387 | |
exists@id | 0.05 | 285348 | |
exists@xref | 0.05 | 285348 | |
ceiling | 0.04 | 221049 | |
ceiling@id | 0.04 | 221043 | |
ceiling@xref | 0.04 | 220928 | |
real | 0.04 | 212708 | |
real@xref | 0.04 | 212693 | |
real@id | 0.04 | 212693 | |
tanh | 0.03 | 163265 | |
tanh@xref | 0.03 | 163247 | |
tanh@id | 0.03 | 163247 | |
imaginary | 0.02 | 131296 | |
imaginary@id | 0.02 | 131288 | |
imaginary@xref | 0.02 | 131288 | |
arg | 0.02 | 128044 | |
arg@id | 0.02 | 128033 | |
arg@xref | 0.02 | 128033 | |
cot | 0.02 | 101096 | |
cot@id | 0.02 | 101090 | |
cot@xref | 0.02 | 101090 | |
degree | 0.01 | 81660 | |
degree@xref | 0.01 | 81649 | |
degree@id | 0.01 | 81649 | |
gcd | 0.01 | 76348 | |
gcd@xref | 0.01 | 76345 | |
gcd@id | 0.01 | 76345 | |
arctan | 0.01 | 73833 | |
arctan@id | 0.01 | 73829 | |
arctan@xref | 0.01 | 73829 | |
prsubset | 0.01 | 60834 | |
prsubset@id | 0.01 | 60827 | |
prsubset@xref | 0.01 | 60827 | |
implies | 0.01 | 51375 | |
implies@id | 0.01 | 51350 | |
implies@xref | 0.01 | 51350 | |
exponentiale | 0.01 | 42422 | |
exponentiale@id | 0.01 | 42412 | |
exponentiale@xref | 0.01 | 42412 | |
arccos | 0.01 | 32846 | |
arccos@xref | 0.01 | 32839 | |
arccos@id | 0.01 | 32839 | |
imaginaryi@xref | 0.01 | 28970 | |
imaginaryi | 0.01 | 28970 | |
imaginaryi@id | 0.01 | 28970 | |
arcsin@id | 0.00 | 27363 | |
arcsin@xref | 0.00 | 27363 | |
arcsin | 0.00 | 27363 | |
sec | 0.00 | 24949 | |
sec@xref | 0.00 | 24949 | |
sec@id | 0.00 | 24949 | |
csc@xref | 0.00 | 16121 | |
csc@id | 0.00 | 16121 | |
csc | 0.00 | 16121 | |
reals@id | 0.00 | 873 | |
reals@xref | 0.00 | 873 | |
reals | 0.00 | 873 | |
integers | 0.00 | 651 | |
integers@id | 0.00 | 651 | |
integers@xref | 0.00 | 651 | |
naturalnumbers | 0.00 | 432 | |
naturalnumbers@id | 0.00 | 432 | |
naturalnumbers@xref | 0.00 | 432 | |
complexes@id | 0.00 | 350 | |
complexes@xref | 0.00 | 350 | |
complexes | 0.00 | 350 | |
rationals@xref | 0.00 | 288 | |
rationals@id | 0.00 | 288 | |
rationals | 0.00 | 288 | |
symbol@id | 0.00 | 52 | |
symbol | 0.00 | 52 | |
symbol@xref | 0.00 | 52 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name@attr[value] | relative % | frequency | |
---|---|---|---|
mo | 421.22 | 2346946229 | |
mo@id | 421.14 | 2346522306 | |
mo@xref | 418.95 | 2334297993 | |
mi | 363.39 | 2024719011 | |
mi@id | 363.29 | 2024184349 | |
mi@xref | 363.26 | 2024013397 | |
mrow | 258.83 | 1442139765 | |
mrow@id | 258.79 | 1441909654 | |
mrow@xref | 252.69 | 1407945958 | |
mo@stretchy | 124.50 | 693703261 | |
mo@stretchy[false] | 124.50 | 693700434 | |
mn | 109.64 | 610904634 | |
mn@id | 109.61 | 610748547 | |
mn@xref | 109.61 | 610742275 | |
math@display | 100.00 | 557177013 | |
math@class | 100.00 | 557177013 | |
math@class[ltx_Math] | 99.95 | 556905918 | |
math@id | 99.94 | 556846305 | |
math@alttext | 99.83 | 556256354 | |
math@display[inline] | 93.68 | 521958364 | |
msub | 76.77 | 427736528 | |
msub@id | 76.75 | 427627401 | |
msub@xref | 76.03 | 423606995 | |
msup | 37.94 | 211418749 | |
msup@id | 37.93 | 211340371 | |
msup@xref | 37.55 | 209207403 | |
minus@id | 24.22 | 134969512 | |
minus@xref | 24.22 | 134969508 | |
mi@mathvariant | 23.85 | 132878176 | |
mi@mathvariant[normal] | 23.74 | 132295173 | |
mo@mathvariant | 16.11 | 89742528 | |
msubsup | 15.66 | 87252474 | |
msubsup@id | 15.66 | 87240106 | |
msubsup@xref | 15.43 | 85962568 | |
mo@mathvariant[normal] | 12.30 | 68517608 | |
mover | 11.89 | 66234954 | |
mover@id | 11.88 | 66219283 | |
mover@xref | 11.87 | 66156979 | |
mover@accent | 11.64 | 64834501 | |
mover@accent[true] | 11.64 | 64834501 | |
mfrac | 11.03 | 61470772 | |
mfrac@id | 11.03 | 61468500 | |
mfrac@xref | 11.03 | 61468027 | |
mtext | 10.52 | 58588548 | |
mtext@id | 10.51 | 58567308 | |
mtext@xref | 10.51 | 58567087 | |
mi@class | 8.78 | 48943588 | |
mi@class[ltx_font_mathcaligraphic] | 8.34 | 46457996 | |
mpadded | 8.31 | 46291524 | |
mpadded@id | 8.31 | 46285365 | |
mpadded@xref | 8.25 | 45959018 | |
mpadded@width | 8.08 | 45045268 | |
mo@rspace | 7.61 | 42401817 | |
mtd | 7.43 | 41395535 | |
mtd@id | 7.43 | 41395517 | |
mtd@xref | 7.03 | 39163626 | |
mi@mathsize | 6.76 | 37676627 | |
math@display[block] | 6.32 | 35218649 | |
mtd@columnalign | 6.15 | 34259436 | |
mstyle | 5.74 | 31996340 | |
mstyle@id | 5.74 | 31996312 | |
mstyle@xref | 5.73 | 31941075 | |
mstyle@displaystyle | 5.71 | 31835110 | |
mstyle@displaystyle[true] | 5.48 | 30516820 | |
mo@largeop | 5.11 | 28447344 | |
mo@symmetric | 5.11 | 28447344 | |
mo@symmetric[true] | 5.11 | 28447344 | |
mo@largeop[true] | 5.11 | 28447344 | |
mo@minsize | 4.99 | 27784676 | |
mo@maxsize | 4.99 | 27784676 | |
mo@mathsize | 4.72 | 26280911 | |
mtd@columnalign[center] | 3.89 | 21668165 | |
merror@class[undefined] | 3.65 | 20336520 | |
mo@movablelimits | 3.54 | 19709702 | |
mo@movablelimits[false] | 3.54 | 19709702 | |
mn@mathsize | 3.52 | 19595226 | |
mn@mathvariant | 3.40 | 18953641 | |
mn@mathvariant[normal] | 3.33 | 18546054 | |
mo@mathvariant[italic] | 3.29 | 18308540 | |
mtr | 3.00 | 16715142 | |
mtr@id | 3.00 | 16715132 | |
mtr@xref | 2.71 | 15077264 | |
matrixrow | 2.33 | 13008897 | |
matrixrow@id | 2.33 | 13008887 | |
matrixrow@xref | 2.33 | 13008448 | |
munder | 2.24 | 12466935 | |
munder@id | 2.24 | 12466812 | |
munder@xref | 2.18 | 12147167 | |
mo@fence[true] | 1.98 | 11039496 | |
mo@fence | 1.98 | 11039496 | |
merror | 1.82 | 10168432 | |
merror@class[ltx_ERROR] | 1.82 | 10168312 | |
merror@class | 1.82 | 10168312 | |
merror@id | 1.82 | 10165366 | |
merror@xref | 1.82 | 10164244 | |
msqrt | 1.72 | 9566688 | |
msqrt@id | 1.72 | 9565856 | |
msqrt@xref | 1.72 | 9565825 | |
mtd@columnalign[left] | 1.70 | 9455917 | |
mtext@mathsize | 1.68 | 9340769 | |
mo@lspace | 1.38 | 7680990 | |
munderover | 1.22 | 6822972 | |
munderover@id | 1.22 | 6822965 | |
munderover@xref | 1.18 | 6576074 | |
mtable | 1.15 | 6410263 | |
mtable@id | 1.15 | 6410255 | |
mtable@rowspacing | 1.06 | 5929949 | |
mo@mathcolor | 1.06 | 5886712 | |
mtable@xref | 1.03 | 5728553 | |
mi@mathcolor | 0.94 | 5238586 | |
mmultiscripts | 0.91 | 5060666 | |
mmultiscripts@id | 0.91 | 5058637 | |
mmultiscripts@xref | 0.90 | 5025219 | |
matrix | 0.88 | 4877481 | |
matrix@id | 0.88 | 4877473 | |
matrix@xref | 0.88 | 4877321 | |
mtext@mathvariant | 0.78 | 4370209 | |
mtable@displaystyle | 0.78 | 4336580 | |
mtable@displaystyle[true] | 0.78 | 4336580 | |
mo@separator | 0.77 | 4263232 | |
mo@separator[true] | 0.77 | 4263232 | |
mtable@columnspacing | 0.74 | 4148108 | |
mprescripts | 0.68 | 3762907 | |
mprescripts@id | 0.68 | 3760961 | |
mprescripts@xref | 0.67 | 3758548 | |
mpadded@lspace | 0.64 | 3579546 | |
mtd@columnalign[right] | 0.55 | 3069093 | |
mo@mathvariant[bold] | 0.50 | 2778469 | |
munder@accentunder | 0.46 | 2587951 | |
munder@accentunder[true] | 0.46 | 2587951 | |
mtext@mathvariant[italic] | 0.45 | 2530483 | |
mtd@class | 0.33 | 1864669 | |
mpadded@depth | 0.32 | 1776562 | |
mpadded@height | 0.32 | 1773705 | |
mpadded@voffset | 0.30 | 1685399 | |
mn@mathcolor | 0.30 | 1649953 | |
mtext@mathvariant[normal] | 0.26 | 1470310 | |
mtext@mathcolor | 0.26 | 1454517 | |
max | 0.25 | 1399632 | |
max@id | 0.25 | 1399550 | |
max@xref | 0.25 | 1399550 | |
mtext@class | 0.24 | 1357959 | |
mstyle@displaystyle[false] | 0.24 | 1318290 | |
mtd@class[ltx_border_r] | 0.23 | 1289676 | |
min | 0.19 | 1070782 | |
min@id | 0.19 | 1070720 | |
min@xref | 0.19 | 1070720 | |
mtd@class[ltx_border_t] | 0.19 | 1052319 | |
mfrac@linethickness | 0.18 | 1030331 | |
mtext@href | 0.17 | 947831 | |
mtext@class[ltx_font_smallcaps] | 0.13 | 733615 | |
mspace@width | 0.09 | 493370 | |
mspace | 0.09 | 493370 | |
mspace@id | 0.09 | 493241 | |
mspace@xref | 0.09 | 492653 | |
mo@mathbackground | 0.07 | 367079 | |
mtable@class | 0.06 | 319849 | |
mtable@class[ltx_align_c] | 0.06 | 310635 | |
mspace@width[veryverythickmathspace] | 0.05 | 300575 | |
mi@mathbackground | 0.05 | 282997 | |
mi@mathvariant[bold-italic] | 0.05 | 259588 | |
mtd@class[ltx_border_l] | 0.04 | 225997 | |
mtext@class[ltx_emph] | 0.04 | 221493 | |
math@class[ltx_centering] | 0.04 | 196753 | |
mn@mathvariant[bold] | 0.03 | 188576 | |
mstyle@scriptlevel | 0.03 | 181396 | |
mtable@align | 0.03 | 178858 | |
mn@mathbackground | 0.03 | 170992 | |
mtd@class[ltx_border_b] | 0.03 | 168882 | |
mtext@mathvariant[bold] | 0.03 | 159194 | |
mtext@class[undefined] | 0.03 | 153043 | |
munderover@accentunder[true] | 0.03 | 148999 | |
munderover@accent[true] | 0.03 | 148999 | |
munderover@accent | 0.03 | 148999 | |
munderover@accentunder | 0.03 | 148999 | |
mfrac@mathcolor | 0.03 | 141242 | |
mstyle@scriptlevel[-1] | 0.02 | 138398 | |
mrow@class | 0.02 | 137425 | |
mtext@mathvariant[monospace] | 0.02 | 130349 | |
menclose@notation | 0.02 | 124645 | |
menclose | 0.02 | 124645 | |
menclose@id | 0.02 | 124600 | |
menclose@xref | 0.02 | 124300 | |
mtable@align[baseline] | 0.02 | 121527 | |
mi@mathvariant[bold] | 0.02 | 120403 | |
mn@class | 0.02 | 118757 | |
mi@mathvariant[italic] | 0.02 | 118230 | |
mi@class[ltx_unit] | 0.02 | 117130 | |
mo@class | 0.02 | 100911 | |
mrow@class[ltx_intertext] | 0.02 | 99498 | |
menclose@notation[updiagonalstrike] | 0.02 | 98430 | |
mtd@class[ltx_border_tt] | 0.02 | 90305 | |
mtd@class[ltx_border_rr] | 0.02 | 84405 | |
mroot | 0.01 | 81812 | |
mroot@id | 0.01 | 81801 | |
mroot@xref | 0.01 | 81801 | |
mn@mathvariant[italic] | 0.01 | 81426 | |
mpadded@class | 0.01 | 76974 | |
mtd@columnspan | 0.01 | 70161 | |
mtext@class[ltx_citemacro_cite] | 0.01 | 61464 | |
mtd@columnalign[justify] | 0.01 | 61212 | |
mo@mathvariant[monospace] | 0.01 | 61098 | |
math@style | 0.01 | 53944 | |
mtext@mathvariant[sans-serif] | 0.01 | 52272 | |
mo@mathvariant[sans-serif] | 0.01 | 49341 | |
mn@class[ltx_font_mathcaligraphic] | 0.01 | 48807 | |
mphantom | 0.01 | 48247 | |
mphantom@id | 0.01 | 48130 | |
mphantom@xref | 0.01 | 46707 | |
mtext@class[ltx_wrap] | 0.01 | 46524 | |
mi@mathvariant[double-struck] | 0.01 | 44185 | |
mo@class[ltx_font_mathcaligraphic] | 0.01 | 42933 | |
mtable@align[bottom] | 0.01 | 40138 | |
mtext@class[ltx_markedasmath] | 0.01 | 39514 | |
mstyle@scriptlevel[+1] | 0.01 | 38234 | |
math@class[ltx_align_left] | 0.01 | 37916 | |
mo@class[ltx_font_smallcaps] | 0.01 | 35111 | |
mi@class[ltx_font_smallcaps] | 0.01 | 34920 | |
mpadded@class[ltx_parbox] | 0.01 | 33388 | |
mtd@columnspan[2] | 0.00 | 27393 | |
mn@class[ltx_font_oldstyle] | 0.00 | 25951 | |
menclose@notation[box] | 0.00 | 25902 | |
mi@mathvariant[sans-serif] | 0.00 | 25538 | |
mn@mathvariant[fraktur] | 0.00 | 24915 | |
math@class[ltx_markedasmath] | 0.00 | 19840 | |
mpadded@class[ltx_markedasmath] | 0.00 | 19492 | |
mtext@class[ltx_minipage] | 0.00 | 19483 | |
msqrt@mathcolor | 0.00 | 19401 | |
mtd@class[ltx_th_row] | 0.00 | 18215 | |
mtext@mathvariant[bold-italic] | 0.00 | 18132 | |
math@class[ltx_align_right] | 0.00 | 17982 | |
mtable@align[bottom1] | 0.00 | 17193 | |
mtd@columnspan[3] | 0.00 | 17185 | |
mrow@class[ltx_wrap] | 0.00 | 15454 | |
mtd@class[ltx_border_bb] | 0.00 | 15242 | |
mtext@class[ltx_parbox] | 0.00 | 14731 | |
mo@class[ltx_framed_rectangle] | 0.00 | 14683 | |
mtext@mathbackground | 0.00 | 14420 | |
mi@class[ltx_markedasmath] | 0.00 | 13066 | |
mn@mathvariant[bold-italic] | 0.00 | 12176 | |
mtext@class[ltx_framed_rectangle] | 0.00 | 11482 | |
mtext@style | 0.00 | 11084 | |
mtext@style[border-color:] | 0.00 | 11064 | |
mtd@class[ltx_border_ll] | 0.00 | 10807 | |
mo@mathvariant[bold-italic] | 0.00 | 10745 | |
mtext@style[black] | 0.00 | 10708 | |
mi@class[ltx_framed_rectangle] | 0.00 | 10263 | |
mi@class[ltx_wrap] | 0.00 | 9287 | |
mtable@width | 0.00 | 9221 | |
mn@mathvariant[double-struck] | 0.00 | 9214 | |
mtd@columnspan[4] | 0.00 | 8073 | |
mpadded@class[ltx_emph] | 0.00 | 7600 | |
mtext@class[ltx_framed_underline] | 0.00 | 7346 | |
mtext@class[ltx_font_mathcaligraphic] | 0.00 | 6786 | |
mtext@class[ltx_intertext] | 0.00 | 6018 | |
mtable@class[ltx_guessed_headers] | 0.00 | 5558 | |
mrow@class[ltx_framed_rectangle] | 0.00 | 4985 | |
mtd@columnalign[char:.] | 0.00 | 4923 | |
mrow@style[border-color:] | 0.00 | 4889 | |
mrow@style | 0.00 | 4889 | |
mpadded@class[ltx_framed_rectangle] | 0.00 | 4680 | |
mtext@class[ltx_missing_label] | 0.00 | 4528 | |
mrow@style[black] | 0.00 | 4509 | |
mn@mathvariant[monospace] | 0.00 | 4482 | |
mn@class[ltx_wrap] | 0.00 | 4414 | |
mtd@columnspan[5] | 0.00 | 4255 | |
mo@mathvariant[double-struck] | 0.00 | 4145 | |
mpadded@style[border-color:] | 0.00 | 4091 | |
mpadded@style | 0.00 | 4091 | |
mrow@class[ltx_align_right] | 0.00 | 4027 | |
mpadded@style[black] | 0.00 | 3983 | |
mrow@class[ltx_emph] | 0.00 | 3926 | |
mtext@class[ltx_lstlisting] | 0.00 | 3862 | |
mtd@columnspan[6] | 0.00 | 3848 | |
mpadded@class[ltx_phantom] | 0.00 | 3495 | |
mtd@rowspan | 0.00 | 3138 | |
mrow@class[ltx_eqn_lefteqn] | 0.00 | 3105 | |
mi@class[ltx_align_left] | 0.00 | 3053 | |
mrow@class[ltx_ulem_uline] | 0.00 | 2936 | |
mn@mathvariant[sans-serif-italic] | 0.00 | 2881 | |
mtext@mathvariant[double-struck] | 0.00 | 2850 | |
mn@class[ltx_font_smallcaps] | 0.00 | 2850 | |
mo@stretchy[true] | 0.00 | 2827 | |
mtext@mathvariant[sans-serif-italic] | 0.00 | 2719 | |
mtext@class[ltx_phantom] | 0.00 | 2644 | |
mstyle@scriptlevel[-2] | 0.00 | 2580 | |
mn@mathvariant[sans-serif] | 0.00 | 2498 | |
mrow@class[ltx_markedasmath] | 0.00 | 2476 | |
mtext@class[ltx_lst_identifier] | 0.00 | 2390 | |
mtable@class[ltx_align_l] | 0.00 | 2302 | |
mstyle@scriptlevel[+2] | 0.00 | 2184 | |
mi@mathvariant[monospace] | 0.00 | 2177 | |
mpadded@class[ltx_unit] | 0.00 | 2140 | |
mtd@class[ltx_th_column] | 0.00 | 2119 | |
mtext@mathvariant[bold-sans-serif] | 0.00 | 2096 | |
mtd@rowspan[2] | 0.00 | 2069 | |
mtd@columnspan[8] | 0.00 | 2011 | |
mpadded@class[ltx_lstlisting] | 0.00 | 1932 | |
mtext@class[ltx_ast_objectname] | 0.00 | 1864 | |
mi@class[ltx_nounicode] | 0.00 | 1808 | |
mn@class[ltx_align_right] | 0.00 | 1776 | |
merror@class[ltx_centering] | 0.00 | 1760 | |
mpadded@lspace[0.3em] | 0.00 | 1740 | |
msub@class | 0.00 | 1715 | |
mtd@columnspan[7] | 0.00 | 1689 | |
mo@mathvariant[sans-serif-italic] | 0.00 | 1617 | |
mtext@class[ltx_lst_numbers_left] | 0.00 | 1604 | |
mn@class[ltx_framed_rectangle] | 0.00 | 1562 | |
mtd@columnspan[10] | 0.00 | 1482 | |
mfrac@class | 0.00 | 1479 | |
mrow@class[ltx_lstlisting] | 0.00 | 1426 | |
mo@mathvariant[bold-sans-serif] | 0.00 | 1412 | |
mtd@columnspan[9] | 0.00 | 1389 | |
mfrac@class[ltx_framed_rectangle] | 0.00 | 1386 | |
mrow@class[ltx_ulem_uuline] | 0.00 | 1340 | |
mpadded@class[ltx_align_c] | 0.00 | 1309 | |
mtext@class[ltx_guessed_headers] | 0.00 | 1302 | |
mi@class[ltx_framed_underline] | 0.00 | 1238 | |
mpadded@lspace[-0.31em] | 0.00 | 1132 | |
mpadded@class[ltx_wrap] | 0.00 | 1125 | |
mpadded@class[ltx_lst_keyword] | 0.00 | 1106 | |
mo@class[ltx_align_left] | 0.00 | 1061 | |
mo@class[ltx_markedasmath] | 0.00 | 1048 | |
mover@class | 0.00 | 1039 | |
mpadded@class[ltx_guessed_headers] | 0.00 | 1032 | |
mi@mathvariant[fraktur] | 0.00 | 1000 | |
mtext@class[ltx_citemacro_citet] | 0.00 | 966 | |
mo@class[ltx_wrap] | 0.00 | 957 | |
mi@class[ltx_phantom] | 0.00 | 908 | |
mpadded@class[ltx_framed_underline] | 0.00 | 907 | |
mover@class[ltx_framed_rectangle] | 0.00 | 849 | |
msub@class[ltx_wrap] | 0.00 | 818 | |
mtext@class[ltx_lst_keyword] | 0.00 | 736 | |
mo@mathvariant[fraktur] | 0.00 | 709 | |
menclose@notation[downdiagonalstrike] | 0.00 | 700 | |
mtext@class[ltx_lst_language_Caml_Objective] | 0.00 | 656 | |
mtext@class[ltx_citemacro_citep] | 0.00 | 622 | |
mtext@class[ltx_centering] | 0.00 | 604 | |
mpadded@lspace[-0.3em] | 0.00 | 568 | |
mtd@columnspan[11] | 0.00 | 558 | |
mpadded@class[ltx_lst_identifier] | 0.00 | 520 | |
mtext@class[ltx_align_right] | 0.00 | 520 | |
mtext@class[downdiagonalstrike] | 0.00 | 476 | |
mpadded@class[ltx_lst_language_Caml_Objective] | 0.00 | 466 | |
mrow@class[ltx_ulem_uwave] | 0.00 | 454 | |
mn@mathvariant[sans-serif-bold-italic] | 0.00 | 444 | |
msup@class | 0.00 | 442 | |
mi@class[ltx_parbox] | 0.00 | 438 | |
mrow@class[ltx_lst_numbers_left] | 0.00 | 428 | |
mtd@columnspan[12] | 0.00 | 412 | |
mtd@rowspan[3] | 0.00 | 400 | |
mrow@class[ltx_lst_language_ACME] | 0.00 | 398 | |
mstyle@mathcolor | 0.00 | 395 | |
menclose@mathcolor | 0.00 | 395 | |
mtd@columnspan[13] | 0.00 | 392 | |
mstyle@href | 0.00 | 389 | |
mi@class[ltx_emph] | 0.00 | 389 | |
msub@class[ltx_markedasmath] | 0.00 | 386 | |
mn@style | 0.00 | 372 | |
mrow@class[ltx_framed_underline] | 0.00 | 368 | |
mn@style[border-color:] | 0.00 | 366 | |
mn@style[black] | 0.00 | 366 | |
mtext@class[ltx_lst_language_OOSC2Eiffel] | 0.00 | 362 | |
mpadded@class[ltx_ast_objectname] | 0.00 | 354 | |
mtext@class[ltx_refmacro_autoref] | 0.00 | 350 | |
mtext@mathvariant[fraktur] | 0.00 | 350 | |
mrow@class[ltx_lst_language_OOSC2Eiffel] | 0.00 | 324 | |
mtable@class[ltx_align_1] | 0.00 | 317 | |
menclose@notation[updiagonalarrow] | 0.00 | 314 | |
mtd@rowspan[4] | 0.00 | 298 | |
mn@class[ltx_align_left] | 0.00 | 295 | |
mpadded@class[ltx_lst_language_Java] | 0.00 | 294 | |
mrow@class[ltx_align_center] | 0.00 | 292 | |
mrow@class[ltx_ulem_sout] | 0.00 | 286 | |
mi@style | 0.00 | 282 | |
mtd@columnspan[14] | 0.00 | 278 | |
mi@style[border-color:] | 0.00 | 276 | |
mi@style[black] | 0.00 | 274 | |
msub@class[ltx_framed_underline] | 0.00 | 267 | |
mtext@class[ltx_lst_language_Java] | 0.00 | 262 | |
mo@class[ltx_parbox] | 0.00 | 252 | |
mtext@class[ltx_eqn_eqnarray] | 0.00 | 250 | |
mroot@mathcolor | 0.00 | 249 | |
mtext@class[ltx_ulem_sout] | 0.00 | 242 | |
mtable@class[ltx_markedasmath] | 0.00 | 226 | |
mpadded@class[ltx_lst_language_fstar] | 0.00 | 222 | |
mn@mathvariant[bold-fraktur] | 0.00 | 222 | |
mrow@class[ltx_ulem_xout] | 0.00 | 222 | |
mn@class[ltx_parbox] | 0.00 | 222 | |
msubsup@class | 0.00 | 221 | |
mpadded@class[ltx_lst_language_x10clocks] | 0.00 | 216 | |
mtd@columnspan[16] | 0.00 | 208 | |
mpadded@class[ltx_lst_language_grafite] | 0.00 | 208 | |
msup@class[ltx_markedasmath] | 0.00 | 207 | |
mi@mathvariant[sans-serif-italic] | 0.00 | 205 | |
mtext@class[ltx_align_left] | 0.00 | 204 | |
mpadded@class[ltx_lst_numbers_left] | 0.00 | 198 | |
mpadded@class[ltx_align_center] | 0.00 | 194 | |
mo@class[ltx_align_right] | 0.00 | 190 | |
mtd@columnspan[15] | 0.00 | 176 | |
mn@class[ltx_emph] | 0.00 | 173 | |
mi@class[ltx_ulem_sout] | 0.00 | 170 | |
mrow@class[ltx_ulem_dashuline] | 0.00 | 170 | |
mtext@class[ltx_theorem_alg] | 0.00 | 164 | |
msup@class[ltx_wrap] | 0.00 | 158 | |
mn@class[ltx_phantom] | 0.00 | 157 | |
mn@mathvariant[bold-sans-serif] | 0.00 | 156 | |
mrow@class[ltx_parbox] | 0.00 | 155 | |
mrow@class[ltx_align_left] | 0.00 | 148 | |
mtext@class[ltx_lst_language_C] | 0.00 | 140 | |
mpadded@class[ltx_align_left] | 0.00 | 138 | |
mtext@mathvariant[sans-serif-bold-italic] | 0.00 | 136 | |
mrow@class[ltx_phantom] | 0.00 | 136 | |
mo@class[ltx_framed_underline] | 0.00 | 134 | |
mover@class[ltx_markedasmath] | 0.00 | 131 | |
mtd@rowspan[-2] | 0.00 | 131 | |
mtext@class[ltx_lst_keywords2] | 0.00 | 128 | |
mtext@class[ltx_lst_language_grafite] | 0.00 | 126 | |
msub@style[border-color:] | 0.00 | 125 | |
msub@style | 0.00 | 125 | |
msub@class[ltx_framed_rectangle] | 0.00 | 125 | |
mtd@columnspan[22] | 0.00 | 124 | |
mtext@class[ltx_align_center] | 0.00 | 122 | |
mtext@class[ltx_href] | 0.00 | 122 | |
msubsup@class[ltx_markedasmath] | 0.00 | 121 | |
mi@class[ltx_align_right] | 0.00 | 119 | |
mstyle@class | 0.00 | 118 | |
mtext@class[ltx_theorem_proclaim] | 0.00 | 114 | |
mpadded@lspace[-0.8em] | 0.00 | 113 | |
msqrt@class | 0.00 | 112 | |
math@style[background-color:white;] | 0.00 | 110 | |
mpadded@class[ltx_lst_language_C] | 0.00 | 110 | |
mtext@class[ltx_lst_string] | 0.00 | 108 | |
msub@style[black] | 0.00 | 106 | |
mtext@class[ltx_lst_language_x10clocks] | 0.00 | 104 | |
mtd@rowspan[5] | 0.00 | 103 | |
mtable@class[ltx_align_\] | 0.00 | 101 | |
mtext@class[ltx_lst_language_ACME] | 0.00 | 100 | |
mtd@columnspan[24] | 0.00 | 99 | |
mpadded@class[ltx_lst_language_ABS] | 0.00 | 96 | |
mtext@class[ltx_lst_language_SSR] | 0.00 | 96 | |
msub@class[ltx_emph] | 0.00 | 95 | |
mtd@columnspan[21] | 0.00 | 90 | |
mtext@class[ltx_lst_language_C++] | 0.00 | 90 | |
mpadded@lspace[-1.3em] | 0.00 | 88 | |
mi@class[ltx_ulem_uuline] | 0.00 | 88 | |
mtd@columnspan[17] | 0.00 | 86 | |
mo@class[ltx_ulem_sout] | 0.00 | 85 | |
mpadded@class[ltx_align_l] | 0.00 | 85 | |
mrow@class[ltx_lst_language_Java] | 0.00 | 84 | |
mpadded@class[ltx_ulem_sout] | 0.00 | 84 | |
mo@style | 0.00 | 82 | |
mtd@columnspan[20] | 0.00 | 81 | |
mrow@class[ltx_align_floatright] | 0.00 | 80 | |
mpadded@class[ltx_ulem_uuline] | 0.00 | 80 | |
msqrt@class[ltx_framed_rectangle] | 0.00 | 79 | |
mtable@class[ltx_align_I] | 0.00 | 79 | |
mo@style[border-color:] | 0.00 | 79 | |
mtext@class[ltx_refmacro_nameref] | 0.00 | 78 | |
mtext@maxsize | 0.00 | 78 | |
mtext@minsize | 0.00 | 78 | |
msubsup@class[ltx_wrap] | 0.00 | 77 | |
mtext@class[ltx_url] | 0.00 | 76 | |
merror@class[ltx_wrap] | 0.00 | 76 | |
mrow@class[ltx_lst_language_VCC] | 0.00 | 76 | |
mo@style[black] | 0.00 | 75 | |
mn@class[ltx_framed_underline] | 0.00 | 73 | |
mpadded@class[ltx_lst_language_sketch] | 0.00 | 72 | |
mtext@class[ltx_font_oldstyle] | 0.00 | 72 | |
mrow@class[ltx_ulem_dotuline] | 0.00 | 72 | |
munder@class | 0.00 | 71 | |
mtd@columnspan[25] | 0.00 | 70 | |
mo@class[ltx_phantom] | 0.00 | 70 | |
munder@class[ltx_framed_rectangle] | 0.00 | 70 | |
mtext@class[ltx_lst_language_CoreErlang] | 0.00 | 66 | |
mtd@columnalign[char:±] | 0.00 | 66 | |
mtd@columnspan[19] | 0.00 | 62 | |
mpadded@class[ltx_intertext] | 0.00 | 62 | |
mtext@class[ltx_lst_language_JS] | 0.00 | 60 | |
mtext@class[ltx_ulem_uline] | 0.00 | 60 | |
mtext@class[ltx_lst_language_sketch] | 0.00 | 60 | |
mpadded@class[ltx_lst_language_OOSC2Eiffel] | 0.00 | 60 | |
mpadded@class[ltx_ulem_uline] | 0.00 | 58 | |
mstyle@class[ltx_wrap] | 0.00 | 56 | |
mfrac@class[ltx_wrap] | 0.00 | 55 | |
mn@class[ltx_markedasmath] | 0.00 | 55 | |
mtext@class[ltx_lst_language_fstar] | 0.00 | 54 | |
mtd@columnspan[18] | 0.00 | 52 | |
mtext@class[ltx_lst_language_Coq] | 0.00 | 52 | |
mtext@class[ltx_lst_language_Matlab] | 0.00 | 52 | |
mtd@columnspan[27] | 0.00 | 51 | |
mtable@style[black] | 0.00 | 50 | |
mtable@style[border-color:] | 0.00 | 50 | |
mtext@class[ltx_lst_language_LNT] | 0.00 | 50 | |
mtable@class[ltx_framed_rectangle] | 0.00 | 50 | |
mtext@class[ltx_lst_language_Python] | 0.00 | 50 | |
mtable@style | 0.00 | 50 | |
mtext@class[ltx_lst_language_LambdaJS] | 0.00 | 50 | |
mtable@class[ltx_wrap] | 0.00 | 50 | |
mrow@class[ltx_lst_language_CoreErlang] | 0.00 | 48 | |
mo@mathvariant[sans-serif-bold-italic] | 0.00 | 46 | |
mspace@class[ltx_markedasmath] | 0.00 | 45 | |
mspace@class | 0.00 | 45 | |
mtext@class[ltx_theorem_demonstration] | 0.00 | 44 | |
mtext@class[ltx_lst_tag] | 0.00 | 44 | |
mtext@class[ltx_lst_language_XML] | 0.00 | 44 | |
mtable@class[ltx_align_\;] | 0.00 | 43 | |
mtext@class[ltx_lst_language_Java_JML] | 0.00 | 42 | |
mtable@class[ltx_align_ll] | 0.00 | 42 | |
mtext@class[ltx_missing] | 0.00 | 40 | |
menclose@class | 0.00 | 39 | |
mtd@rowspan[6] | 0.00 | 38 | |
mpadded@class[ltx_lst_space] | 0.00 | 38 | |
mtd@columnspan[23] | 0.00 | 37 | |
mrow@class[ltx_lst_language_Matlab] | 0.00 | 36 | |
mpadded@lspace[-0.6em] | 0.00 | 36 | |
mtext@class[ltx_theorem_conj] | 0.00 | 36 | |
mover@class[ltx_wrap] | 0.00 | 36 | |
mpadded@lspace[-0.9em] | 0.00 | 35 | |
mrow@class[ltx_lst_language_SSR] | 0.00 | 34 | |
mpadded@width[0.4em] | 0.00 | 34 | |
munder@style[black] | 0.00 | 32 | |
mo@class[ltx_unit] | 0.00 | 32 | |
munder@style[border-color:] | 0.00 | 32 | |
mtext@mathvariant[bold-fraktur] | 0.00 | 32 | |
msup@class[ltx_emph] | 0.00 | 32 | |
munder@style | 0.00 | 32 | |
mtext@class[ltx_path] | 0.00 | 30 | |
mpadded@class[ltx_lst_language_CoreErlang] | 0.00 | 30 | |
mrow@class[ltx_lst_language_] | 0.00 | 30 | |
mpadded@class[ltx_align_right] | 0.00 | 29 | |
mtable@class[ltx_align_x] | 0.00 | 28 | |
mo@class[ltx_emph] | 0.00 | 28 | |
msqrt@class[ltx_wrap] | 0.00 | 28 | |
mrow@class[ltx_lst_language_C] | 0.00 | 28 | |
merror@class[ltx_emph] | 0.00 | 28 | |
mtable@class[ltx_align_csvcomma] | 0.00 | 28 | |
mtext@class[ltx_ulem_uuline] | 0.00 | 28 | |
mpadded@lspace[-1em] | 0.00 | 27 | |
mtable@class[ltx_emph] | 0.00 | 27 | |
mtext@class[iml] | 0.00 | 26 | |
mtext@class[ltx_lst_language_] | 0.00 | 26 | |
mstyle@class[ltx_emph] | 0.00 | 25 | |
mtable@class[ltx_align_lll] | 0.00 | 25 | |
mrow@class[ltx_lst_keywords3] | 0.00 | 24 | |
mpadded@class[ltx_nounicode] | 0.00 | 24 | |
mtext@class[ltx_eqn_align] | 0.00 | 24 | |
mtext@class[ltx_citemacro_citealias] | 0.00 | 24 | |
mtext@class[ltx_framed_topbottom] | 0.00 | 24 | |
mtable@class[ltx_align_r] | 0.00 | 23 | |
mtext@class[ltx_lst_language_VCC] | 0.00 | 22 | |
mtd@columnalign[char:-] | 0.00 | 22 | |
mtext@class[ltx_lst_language_Haskell] | 0.00 | 22 | |
mtable@class[ltx_align_(] | 0.00 | 22 | |
msup@style[black] | 0.00 | 21 | |
msup@style | 0.00 | 21 | |
msup@style[border-color:] | 0.00 | 21 | |
msup@class[ltx_framed_rectangle] | 0.00 | 21 | |
mtext@class[ltx_theorem_theorem] | 0.00 | 20 | |
menclose@class[ltx_parbox] | 0.00 | 20 | |
mrow@class[ltx_lst_language_Python] | 0.00 | 20 | |
mtext@style[opacity:0.7] | 0.00 | 20 | |
mrow@class[iml] | 0.00 | 20 | |
mtable@class[ltx_align_\>] | 0.00 | 20 | |
mrow@class[ltx_lst_identifier] | 0.00 | 20 | |
mfrac@class[ltx_markedasmath] | 0.00 | 19 | |
mtd@columnalign[char:=] | 0.00 | 19 | |
mtable@class[ltx_align_] | 0.00 | 19 | |
mtable@class[ltx_align_j] | 0.00 | 18 | |
mtable@class[ltx_align_~] | 0.00 | 18 | |
mtable@class[ltx_parbox] | 0.00 | 18 | |
mstyle@class[ltx_markedasmath] | 0.00 | 18 | |
mrow@class[ltx_lst_language_Caml_Objective] | 0.00 | 18 | |
mtd@rowspan[8] | 0.00 | 18 | |
mrow@class[ltx_lst_language_Uppaal] | 0.00 | 18 | |
mi@mathvariant[bold-sans-serif] | 0.00 | 17 | |
mtd@columnspan[26] | 0.00 | 17 | |
mfrac@style[border-color:] | 0.00 | 16 | |
mtd@rowspan[7] | 0.00 | 16 | |
mrow@class[ltx_lst_language_fstar] | 0.00 | 16 | |
mtable@class[ltx_align_\textnormal{missing}] | 0.00 | 16 | |
mpadded@lspace[-1.6em] | 0.00 | 16 | |
mtext@class[ltx_number] | 0.00 | 16 | |
mtable@class[ltx_align_\\] | 0.00 | 16 | |
mtext@class[ltx_lst_language_C_Sharp] | 0.00 | 16 | |
mfrac@style | 0.00 | 16 | |
mfrac@style[black] | 0.00 | 16 | |
mrow@class[ltx_lst_language_ML] | 0.00 | 16 | |
mfrac@class[ltx_align_left] | 0.00 | 15 | |
mpadded@lspace[-0.75em] | 0.00 | 15 | |
mtext@class[ltx_ulem_uwave] | 0.00 | 14 | |
mtable@class[ltx_align_\quad] | 0.00 | 14 | |
mtext@class[ltx_theorem_crit] | 0.00 | 14 | |
mrow@class[ltx_lst_language_C_Sharp] | 0.00 | 14 | |
mpadded@class[ltx_lst_language_Jivaro] | 0.00 | 14 | |
mtable@class[ltx_align_e] | 0.00 | 13 | |
mtable@class[ltx_align_\mbox{missing}] | 0.00 | 13 | |
mpadded@lspace[-1.2em] | 0.00 | 13 | |
msubsup@class[ltx_framed_rectangle] | 0.00 | 12 | |
msubsup@style | 0.00 | 12 | |
mrow@class[ltx_lst_emph] | 0.00 | 12 | |
mtext@class[ltx_theorem_lemma] | 0.00 | 12 | |
mtd@columnspan[35] | 0.00 | 12 | |
mtext@class[updiagonalstrike] | 0.00 | 12 | |
msubsup@style[black] | 0.00 | 12 | |
msubsup@style[border-color:] | 0.00 | 12 | |
mrow@class[ltx_lst_language_Haskell] | 0.00 | 12 | |
mtext@class[ltx_theorem_rem] | 0.00 | 12 | |
mtext@class[ltx_lst_language_EiffelLikePseudocode] | 0.00 | 12 | |
mrow@class[ltx_ast_objectname] | 0.00 | 12 | |
mtable@class[ltx_align_|] | 0.00 | 12 | |
menclose@class[ltx_wrap] | 0.00 | 11 | |
msubsup@class[ltx_emph] | 0.00 | 11 | |
mtable@class[ltx_align_\par] | 0.00 | 11 | |
mover@class[ltx_align_left] | 0.00 | 11 | |
mtd@rowspan[16] | 0.00 | 11 | |
mrow@class[ltx_lst_language_LambdaJS] | 0.00 | 10 | |
mmultiscripts@class | 0.00 | 10 | |
mtable@class[ltx_align_left] | 0.00 | 10 | |
mtext@class[ltx_theorem_summ] | 0.00 | 10 | |
mtd@rowspan[11] | 0.00 | 10 | |
mtext@class[ltx_theorem_prop] | 0.00 | 10 | |
mpadded@class[ltx_lst_language_Matlab] | 0.00 | 10 | |
mtext@class[ltx_theorem_remark] | 0.00 | 10 | |
mrow@class[ltx_lst_language_Java_JML] | 0.00 | 10 | |
mtd@rowspan[9] | 0.00 | 10 | |
mtext@class[ltx_theorem_prob] | 0.00 | 10 | |
mtd@columnalign[char:csvcomma] | 0.00 | 10 | |
mpadded@class[ltx_ulem_dashuline] | 0.00 | 10 | |
mtext@class[ltx_lst_language_ML] | 0.00 | 10 | |
msup@class[ltx_phantom] | 0.00 | 10 | |
mtable@class[ltx_align_2] | 0.00 | 9 | |
mtd@rowspan[-4] | 0.00 | 9 | |
msub@class[ltx_phantom] | 0.00 | 9 | |
mtd@columnalign[char:] | 0.00 | 9 | |
msup@class[ltx_align_left] | 0.00 | 9 | |
mrow@class[ltx_lst_language_imp] | 0.00 | 8 | |
mtd@columnspan[-1] | 0.00 | 8 | |
msup@class[ltx_unit] | 0.00 | 8 | |
mrow@class[ltx_lst_language_prolog] | 0.00 | 8 | |
mrow@class[ltx_framed_topbottom] | 0.00 | 8 | |
mrow@class[ltx_lst_language_anglican] | 0.00 | 8 | |
mtext@class[ltx_lst_language_haskell] | 0.00 | 8 | |
mtable@class[ltx_align_right] | 0.00 | 8 | |
mrow@class[ltx_lst_language_C++] | 0.00 | 8 | |
mtext@class[ltx_theorem_fact] | 0.00 | 8 | |
mi@class[ltx_ulem_uline] | 0.00 | 8 | |
mmultiscripts@class[ltx_markedasmath] | 0.00 | 8 | |
msub@class[ltx_align_left] | 0.00 | 7 | |
mpadded@class[ltx_align_\] | 0.00 | 7 | |
mstyle@class[ltx_align_left] | 0.00 | 7 | |
mtable@class[ltx_align_lcl] | 0.00 | 7 | |
mtable@class[ltx_align_a] | 0.00 | 7 | |
mpadded@class[ltx_lst_language_] | 0.00 | 6 | |
mtable@class[ltx_centering] | 0.00 | 6 | |
mtext@class[ltx_lst_language_java] | 0.00 | 6 | |
mo@href | 0.00 | 6 | |
mtext@class[ltx_theorem_lem] | 0.00 | 6 | |
mpadded@class[iml] | 0.00 | 6 | |
mrow@class[ltx_lst_language_BoogiePL] | 0.00 | 6 | |
mpadded@class[ltx_lst_language_ML] | 0.00 | 6 | |
mstyle@class[ltx_parbox] | 0.00 | 6 | |
mtd@columnspan[50] | 0.00 | 6 | |
mpadded@class[ltx_lst_language_LLinks] | 0.00 | 6 | |
msub@class[ltx_eqn_lefteqn] | 0.00 | 6 | |
mtd@columnspan[28] | 0.00 | 6 | |
mtext@class[ltx_citemacro_citeauthor] | 0.00 | 6 | |
mpadded@class[ltx_lst_language_SSR] | 0.00 | 6 | |
mrow@class[cvm] | 0.00 | 6 | |
mtd@class[ltx_eqn_lefteqn] | 0.00 | 6 | |
mi@style[opacity:1] | 0.00 | 6 | |
msup@class[ltx_align_right] | 0.00 | 6 | |
mtable@class[ltx_align_i] | 0.00 | 6 | |
mtext@class[ltx_theorem_thm] | 0.00 | 6 | |
mn@style[opacity:1] | 0.00 | 6 | |
mtable@class[ltx_align_k] | 0.00 | 5 | |
mtd@rowspan[-6] | 0.00 | 5 | |
mtable@class[ltx_align_[] | 0.00 | 5 | |
mtable@class[ltx_align_N] | 0.00 | 5 | |
mover@class[ltx_align_right] | 0.00 | 5 | |
mn@class[ltx_ulem_sout] | 0.00 | 5 | |
mi@href | 0.00 | 5 | |
mtable@class[ltx_align_\text{missing}] | 0.00 | 5 | |
mpadded@lspace[-0.66em] | 0.00 | 5 | |
mtable@class[ltx_align_⌋] | 0.00 | 5 | |
mpadded@class[ltx_lst_language_VCC] | 0.00 | 4 | |
mo@class[ltx_align_center] | 0.00 | 4 | |
mtd@columnspan[37] | 0.00 | 4 | |
mtext@class[ltx_theorem_example] | 0.00 | 4 | |
mtext@class[ltx_theorem_corollary] | 0.00 | 4 | |
mtext@class[ltx_lst_language_ocaml] | 0.00 | 4 | |
mrow@class[ltx_caption] | 0.00 | 4 | |
mtext@class[ltx_lst_language_lgmpl] | 0.00 | 4 | |
mtext@class[ltx_lst_language_ABS] | 0.00 | 4 | |
mrow@class[ltx_lst_language_lgmpl] | 0.00 | 4 | |
mtable@class[ltx_align_h] | 0.00 | 4 | |
mtext@class[ltx_theorem_proof] | 0.00 | 4 | |
mtext@class[ltx_lst_language_C_ANSI] | 0.00 | 4 | |
mtext@class[ltx_theorem_definition] | 0.00 | 4 | |
mtable@class[ltx_align_\centering] | 0.00 | 4 | |
mpadded@class[ltx_lst_keywords2] | 0.00 | 4 | |
mpadded@class[ltx_ulem_uwave] | 0.00 | 4 | |
mtd@columnspan[-11] | 0.00 | 4 | |
mover@class[ltx_emph] | 0.00 | 4 | |
menclose@class[ltx_align_c] | 0.00 | 4 | |
mtext@class[ltx_lst_language_SugarJ] | 0.00 | 4 | |
mrow@class[cryptoC] | 0.00 | 4 | |
mtext@class[ltx_theorem_cor] | 0.00 | 4 | |
mstyle@class[ltx_align_right] | 0.00 | 3 | |
mfrac@class[ltx_align_right] | 0.00 | 3 | |
mtd@rowspan[10] | 0.00 | 3 | |
mover@class[ltx_phantom] | 0.00 | 3 | |
mo@style[opacity:1] | 0.00 | 3 | |
mstyle@style[border-color:] | 0.00 | 2 | |
mover@style[black] | 0.00 | 2 | |
mrow@class[ltx_lst_language_java] | 0.00 | 2 | |
mtable@class[ltx_align_n] | 0.00 | 2 | |
mrow@class[ltx_lst_language_C_ANSI] | 0.00 | 2 | |
mtable@class[ltx_align_α] | 0.00 | 2 | |
mtable@class[ltx_align_t] | 0.00 | 2 | |
mtd@rowspan[-8] | 0.00 | 2 | |
mrow@class[ltx_lst_language_Join] | 0.00 | 2 | |
mpadded@class[ltx_lst_language_C++] | 0.00 | 2 | |
mover@style[border-color:] | 0.00 | 2 | |
mtext@class[ltx_citemacro_citeyear] | 0.00 | 2 | |
mtext@class[ltx_theorem_satz] | 0.00 | 2 | |
mtd@rowspan[12] | 0.00 | 2 | |
mrow@class[ltx_lst_language_isa] | 0.00 | 2 | |
mpadded@class[ltx_lst_language_java] | 0.00 | 2 | |
msqrt@class[ltx_markedasmath] | 0.00 | 2 | |
mpadded@class[ltx_lst_language_Java_JML] | 0.00 | 2 | |
mpadded@class[ltx_lst_tag] | 0.00 | 2 | |
menclose@class[ltx_emph] | 0.00 | 2 | |
mpadded@class[ltx_eqn_lefteqn] | 0.00 | 2 | |
mrow@class[ltx_lst_language_c] | 0.00 | 2 | |
mtext@class[ltx_theorem_observation] | 0.00 | 2 | |
mi@mathvariant[bold-fraktur] | 0.00 | 2 | |
mpadded@class[ltx_lst_language_LambdaJS] | 0.00 | 2 | |
mrow@class[ltx_lst_language_ocaml] | 0.00 | 2 | |
mover@style | 0.00 | 2 | |
mstyle@class[ltx_framed_rectangle] | 0.00 | 2 | |
mrow@class[ltx_lst_language_Boogie] | 0.00 | 2 | |
mtext@class[ltx_lst_language_Jivaro] | 0.00 | 2 | |
mpadded@class[ltx_lst_language_babellanguage] | 0.00 | 2 | |
mtd@rowspan[21] | 0.00 | 2 | |
mtext@class[ltx_theorem_question] | 0.00 | 2 | |
mstyle@style[black] | 0.00 | 2 | |
mpadded@class[ltx_lst_language_XML] | 0.00 | 2 | |
mtext@class[ltx_theorem_assumption] | 0.00 | 2 | |
mtext@class[ltx_affiliation_state] | 0.00 | 2 | |
mrow@class[ltx_lst_language_Pest] | 0.00 | 2 | |
mrow@class[ltx_lst_language_Ruby] | 0.00 | 2 | |
msqrt@class[ltx_align_left] | 0.00 | 2 | |
mstyle@style | 0.00 | 2 | |
mtd@rowspan[-10] | 0.00 | 2 | |
mpadded@class[ltx_lst_string] | 0.00 | 2 | |
mtable@class[ltx_align_\phantom{missing}] | 0.00 | 2 | |
mtext@class[ltx_citemacro_citenum] | 0.00 | 2 | |
mtable@class[ltx_align_u] | 0.00 | 1 | |
mtable@class[ltx_align_M] | 0.00 | 1 | |
mpadded@class[ltx_align_12] | 0.00 | 1 | |
mtable@class[ltx_align_q] | 0.00 | 1 | |
mstyle@class[ltx_phantom] | 0.00 | 1 | |
mmultiscripts@style[black] | 0.00 | 1 | |
mtd@columnspan[33] | 0.00 | 1 | |
mtd@rowspan[-5] | 0.00 | 1 | |
mroot@class | 0.00 | 1 | |
mfrac@class[ltx_phantom] | 0.00 | 1 | |
mmultiscripts@class[ltx_ulem_sout] | 0.00 | 1 | |
menclose@class[ltx_align_l] | 0.00 | 1 | |
msub@class[ltx_align_floatright] | 0.00 | 1 | |
mtd@columnspan[-2] | 0.00 | 1 | |
munder@class[ltx_align_right] | 0.00 | 1 | |
mroot@class[ltx_framed_rectangle] | 0.00 | 1 | |
mtable@class[ltx_align_lc] | 0.00 | 1 | |
mi@class[ltx_align_center] | 0.00 | 1 | |
mmultiscripts@style | 0.00 | 1 | |
mtable@class[ltx_align_ṁissing] | 0.00 | 1 | |
mtd@columnspan[43] | 0.00 | 1 | |
mtd@rowspan[22] | 0.00 | 1 | |
msup@class[ltx_framed_underline] | 0.00 | 1 | |
mtable@class[ltx_align_A] | 0.00 | 1 | |
mtable@class[ltx_align_b] | 0.00 | 1 | |
mtable@class[ltx_align_{}^{\prime}] | 0.00 | 1 | |
mtd@rowspan[13] | 0.00 | 1 | |
mtable@class[ltx_align_g] | 0.00 | 1 | |
menclose@class[ltx_guessed_headers] | 0.00 | 1 | |
mtd@rowspan[-9] | 0.00 | 1 | |
mtable@class[ltx_align_L] | 0.00 | 1 | |
mmultiscripts@style[border-color:] | 0.00 | 1 | |
mtd@rowspan[-3] | 0.00 | 1 | |
mtd@rowspan[15] | 0.00 | 1 | |
mtable@class[ltx_align_ρ] | 0.00 | 1 | |
msub@class[ltx_ulem_sout] | 0.00 | 1 | |
mtd@rowspan[19] | 0.00 | 1 | |
mtable@class[ltx_align_\{] | 0.00 | 1 | |
mtable@class[ltx_align_\boldsymbol{missing}] | 0.00 | 1 | |
mmultiscripts@class[ltx_framed_rectangle] | 0.00 | 1 | |
msqrt@class[ltx_emph] | 0.00 | 1 | |
mtd@rowspan[26] | 0.00 | 1 | |
mn@class[ltx_ulem_uuline] | 0.00 | 1 | |
mtd@rowspan[14] | 0.00 | 1 | |
mtable@class[ltx_align_\mathrm{missing}] | 0.00 | 1 |
Some inaccuracies I've spotted - since I split the presentation/content elements after the report was generated, my heuristic can let some elements slip in the presentation report if they're content elements starting with m
, embarrassingly enough. So matrix
and matrixrow
are listed in the wrong report, potentially others? Probably quite minor, since this isn't the focus of the current study.
Another note that the cmml
report is not really pure Content MathML
, but rather all elements that are meaningful MathML (or at least I tried to denoise to only those!) which are not within presentation MathML. So constructs such as semantics
and annotation-xml
can be found in the cmml
report, as well as any remaining non-mathml noise...
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The discarded data via the cutoffs script, starting from the 250 MB report collection was:
The kept data can be seen in the cmml and pmml reports in this Gist.