Skip to content

Instantly share code, notes, and snippets.

const fetchToken = () => {
return new Promise((resolve) => {
chrome.storage.sync.get(["userToken"], (obj) => {
resolve(obj["userToken"] ? obj["userToken"] : "");
});
});
};
const fetchRefreshToken = () => {
return new Promise((resolve) => {
https://www.buycott.com/campaign/browse
https://www.buycott.com/campaign/browse#campaign_trending
https://www.buycott.com/campaign/browse#campaign_popular
https://www.buycott.com/campaign/1317/boycott-trump-products
https://www.buycott.com/campaign/1177/save-and-support-the-bees-as-much-as-you-can
https://www.buycott.com/campaign/1193/stop-buying-products-manufactured-using-prison-slave-labor
https://www.buycott.com/campaign/613/boycott-russian-products-because-of-homophobic-lgbt-policies
https://www.buycott.com/campaign/412/reject-magic-hat-s-frivolous-lawsuit-against-west-sixth
https://www.buycott.com/campaign/211/pro-gmo-or-pro-right-to-know
https://www.buycott.com/campaign/354/say-no-to-palm-oil-products
{
"geocoding": {
"version": "0.2",
"attribution": "https://geocode.earth/guidelines",
"query": {
"parsed_text": {
"postalcode": "87801"
},
"size": 10,
"private": false,
{
"logger": {
"level": "info",
"timestamp": false
},
"esclient": {
"hosts": [
{ "host": "0.0.0.0" }
]
},
@dgkris
dgkris / test.py
Last active April 18, 2019 02:11
for i in range(200):
for j in range(300):
print("hello")
print("hello")
for i in range(200):
for j in range(300):
print("hello")
print("hello")
{
"logger": {
"level": "info",
"timestamp": false
},
"esclient": {
"hosts": [
{ "host": "elasticsearch" }
]
},
@dgkris
dgkris / abc.py
Last active April 15, 2019 04:19
for i in range(100):
for a in range(250):
for b in range(200):
print "abba"
for j in range(300):
print "hello"
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(12345)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1)
.iterations(1)
.activation(Activation.RELU)
.weightInit(WeightInit.XAVIER)
.learningRate(0.1)
.list()
.layer(0, new DenseLayer.Builder().nIn(402).nOut(1024).build())
.layer(1, new DenseLayer.Builder().nIn(1024).nOut(2048).build())
public static void predict(SentimentExampleIterator iter,MultiLayerNetwork net,String sentence) {
DataSet dataSet=iter.reviewEncode(sentence);
INDArray features = dataSet.getFeatureMatrix();
INDArray inMask = dataSet.getFeaturesMaskArray();
INDArray outMask = dataSet.getLabelsMaskArray();
INDArray predicted = net.output(features,false,inMask,outMask);
INDArray output=predicted.get(NDArrayIndex.point(0), NDArrayIndex.all(), NDArrayIndex.point(predicted.shape()[2]-1));
System.out.println(output);
}
//Prediction logic
public void predict(MultiLayerNetwork net,String sentence) {
SentimentExampleIterator iter = null;
DataSet dataSet=iter.reviewEncode("hello world");
INDArray features = dataSet.getFeatureMatrix();
INDArray inMask = dataSet.getFeaturesMaskArray();
INDArray outMask = dataSet.getLabelsMaskArray();
INDArray predicted = net.output(features,false,inMask,outMask);
}