Last active
November 29, 2019 20:28
-
-
Save dgonzo/fa3e06c06d2f8ee68807423b6e35691d to your computer and use it in GitHub Desktop.
Predictions with AWS Machine Learning w/ JavaScript (Node.js)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
Setup your aws account and create a credentials file: | |
$ mkdir ~/.aws # if it doesn't exist | |
$ cat <<'EOF' >> ~/.aws/credentials | |
[default] | |
aws_secret_access_key = "secret key" | |
aws_access_key_id = "your id" | |
EOF | |
Install aws module: | |
npm install aws-sdk | |
Train an example modle with AWS Machine Learning following the steps in these slides starting on slide 22: | |
https://docs.google.com/a/kdk-id.com/presentation/d/1NYBcMamiZ9Kn4cSantDlPwG21XLPA3Z2cFmX_HpPXC0/edit?usp=sharing | |
Execute the following script. Return contains: | |
Request { | |
... | |
{ Prediction: | |
{ predictedLabel: '1', | |
predictedScores: { '1': 0.5786105394363403 }, | |
details: { Algorithm: 'SGD', PredictiveModelType: 'BINARY' } } } | |
Yay! We're 58% sure 'y' is going to happen with this person. | |
*/ | |
var AWS = require('aws-sdk') | |
var credentials = new AWS.SharedIniFileCredentials({profile: 'default'}); | |
AWS.config.credentials = credentials; | |
AWS.config.update({region: 'us-east-1'}); | |
var machinelearning = new AWS.MachineLearning({apiVersion: '2014-12-12', region: "us-east-1"}); | |
var params = { | |
MLModelId: 'ml-majjuNoThlD', /* required */ | |
PredictEndpoint: 'https://realtime.machinelearning.us-east-1.amazonaws.com', /* required */ | |
Record: { | |
"age": "36", | |
"job": "admin.", | |
"marital": "married", | |
"education": "university.degree", | |
"default": "no", | |
"housing": "no", | |
"loan": "no", | |
"contact": "cellular", | |
"month": "jun", | |
"day_of_week": "mon", | |
"duration": "174", | |
"campaign": "1", | |
"pdays": "3", | |
"previous": "1", | |
"poutcome": "success", | |
"emp_var_rate": "-2.9", | |
"cons_price_idx": "92.963", | |
"cons_conf_idx": "-40.8", | |
"euribor3m": "1.266", | |
"nr_employed": "5076.2" | |
} | |
}; | |
machinelearning.predict(params, function(err, data) { | |
if (err) console.log(err, err.stack); // an error occurred | |
else console.log(data); // successful response | |
}); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment