Skip to content

Instantly share code, notes, and snippets.

record_date transaction_mtd_amt
2005-10-03 18777
2005-10-04 21586
2005-10-05 29910
2005-10-06 32291
2005-10-07 37696
2005-10-11 47362
2005-10-12 51386
2005-10-13 57164
2005-10-14 64981
<!doctype html>
<html lang="">
<head>
{# <script src="/static/js/htmx-1.8.0.js"></script> #}
<script src="https://unpkg.com/[email protected]/dist/htmx.min.js"></script>
</head>
<body>

Investor purchases $100 in treasury securities

Central Banking 101 by Joseph Wang has the following example on page 26:

image

So an investor purchases $100 of treasury securities from the treasury. I'd like to focus on that part of the example.

I've highlighted the relevant parts of the balance sheets here:

A-1d.pkl
AAPY-1d.pkl
AAT-1d.pkl
AB-1d.pkl
ABVE-1d.pkl
ACIO-1d.pkl
ACNB-1d.pkl
ACV-1d.pkl
ACVF-1d.pkl
ACWI-1d.pkl
ACRS-1d.pkl
ADCT-1d.pkl
ANIX-1d.pkl
AOMR-1d.pkl
APLD-1d.pkl
APLY-1d.pkl
ASRV-1d.pkl
AVO-1d.pkl
BAX-1d.pkl
BCOV-1d.pkl
import pandas as pd
import treasury_gov_pandas
import streamlit as st
import plotly
import plotly.express
# @st.cache_data
def get_dataframe():
return treasury_gov_pandas.load_records('https://api.fiscaldata.treasury.gov/services/api/fiscal_service/v1/accounting/od/auctions_query', lookback=10, update=False)
import io
import requests
import pandas as pd
def trade_quote(symbol, expiration, date):
url = "http://127.0.0.1:25510/v2/bulk_hist/option/trade_quote"
querystring = { "root": symbol, "exp": expiration, "start_date": date, "end_date": date, "use_csv":"true" }
import pandas as pd
import treasury_gov_pandas.datasets.mts.mts_table_4.load
import streamlit as st
import plotly.express as px
import numpy as np
df = treasury_gov_pandas.datasets.mts.mts_table_4.load.load()
# convert null values to 0 in the column 'current_month_net_rcpt_amt'
import os
import glob
import pandas as pd
from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource, HoverTool
from bokeh.transform import linear_cmap
from bokeh.palettes import Viridis256
from bokeh.io import output_notebook
from bokeh.plotting import figure, show
import bokeh.models
import bokeh.palettes
import bokeh.transform
import pandas as pd