Created
June 1, 2020 02:23
-
-
Save dhgrs/56424106e00bafee9617b0a15a028c2c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import os | |
import random | |
| |
import pytorch_pfn_extras as ppe | |
import pytorch_pfn_extras.training.extensions as extensions | |
import pytorch_pfn_extras.training.triggers as triggers | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torchvision import datasets, transforms | |
| |
| |
class Net(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.conv1 = nn.Conv2d(1, 20, 5, 1) | |
self.conv2 = nn.Conv2d(20, 50, 5, 1) | |
self.fc1 = nn.Linear(4 * 4 * 50, 500) | |
self.fc2 = nn.Linear(500, 10) | |
| |
def forward(self, x): | |
x = F.relu(self.conv1(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = F.relu(self.conv2(x)) | |
x = F.max_pool2d(x, 2, 2) | |
x = x.flatten(start_dim=1) | |
x = F.relu(self.fc1(x)) | |
x = self.fc2(x) | |
return F.log_softmax(x, dim=1) | |
| |
| |
def train(manager, model, device, train_loader, optimizer): | |
while not manager.stop_trigger: | |
model.train() | |
for batch_idx, (data, target) in enumerate(train_loader): | |
with manager.run_iteration(): | |
data, target = data.to(device), target.to(device) | |
optimizer.zero_grad() | |
output = model(data) | |
loss = F.nll_loss(output, target) | |
ppe.reporting.report({"train/loss": loss.item()}) | |
loss.backward() | |
optimizer.step() | |
| |
| |
def main(): | |
# Training settings | |
device = torch.device(f"cuda:{os.environ['OMPI_COMM_WORLD_LOCAL_RANK']}") | |
torch.cuda.set_device(device) | |
os.environ["WORLD_SIZE"] = os.environ["OMPI_COMM_WORLD_SIZE"] | |
os.environ["RANK"] = os.environ["OMPI_COMM_WORLD_RANK"] | |
os.environ["MASTER_ADDR"] = "localhost" | |
os.environ["MASTER_PORT"] = "1234" | |
torch.distributed.init_process_group(backend="nccl", init_method="env://") | |
| |
kwargs = {"num_workers": 1, "pin_memory": True} | |
train_loader = torch.utils.data.DataLoader( | |
datasets.MNIST( | |
"../data", train=True, download=True, transform=transforms.ToTensor(), | |
), | |
batch_size=256, | |
**kwargs, | |
) | |
test_loader = torch.utils.data.DataLoader( | |
datasets.MNIST( | |
"../data", train=False, download=True, transform=transforms.ToTensor, | |
), | |
batch_size=1000, | |
**kwargs, | |
) | |
| |
model = Net() | |
model.to(device) | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])] | |
) | |
optimizer = optim.SGD(model.parameters(), lr=1e-3) | |
| |
manager = ppe.training.ExtensionsManager( | |
model, optimizer, 4, iters_per_epoch=len(train_loader), | |
) | |
| |
def dummy_loss(manager): | |
dummy_loss = [["dummy", 1.0, 2.0, 1.0, 1.0], ["dummy", 1.1, 0.1, 1.1, 1.1]] | |
ppe.reporting.report( | |
{ | |
"dummy/loss": dummy_loss[int(os.environ["OMPI_COMM_WORLD_RANK"])][ | |
manager.epoch | |
] | |
} | |
) | |
| |
manager.extend(dummy_loss, trigger=(1, "epoch")) | |
manager.extend( | |
ppe.training.extensions.snapshot(filename="snapshot_best", saver_rank=0), | |
trigger=triggers.MinValueTrigger("dummy/loss"), | |
) | |
manager.extend(extensions.ProgressBar()) | |
train(manager, model, device, train_loader, optimizer) | |
| |
| |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment