Last active
September 7, 2021 19:56
-
-
Save dhoerl/f64a4cf3e6257ff27c41133fda97c824 to your computer and use it in GitHub Desktop.
Implement asymmetric cryptography for distributed app where keys can both be stored as strings
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// | |
// Asymmetric.swift | |
// | |
// Created by David Hoerl on 12/23/18. | |
// Copyright © 2018 David Hoerl. All rights reserved. | |
// | |
/* | |
This is the portion you need in the distributed app, which uses the public key that can appear in plain text | |
*/ | |
import Foundation | |
#if true | |
private let keyType = kSecAttrKeyTypeRSA // kSecAttrKeyTypeEC | |
private let algorithm = SecKeyAlgorithm.rsaEncryptionOAEPSHA512AESGCM // EncryptionOAEPSHA512AESGCM | |
private let keySize = 4096 // SecKey.h states that with this size, you get AES 256-bit encoding of the payload | |
#else | |
private let keyType = kSecAttrKeyTypeECSECPrimeRandom // kSecAttrKeyTypeECSECPrimeRandom | |
private let algorithm = SecKeyAlgorithm.eciesEncryptionCofactorVariableIVX963SHA512AESGCM | |
private let keySize = 384 // SecKey.h states that with this size, you get AES 256-bit encoding of the payload | |
#endif | |
struct Asymmetric { | |
// BGCnqt28i6sHMkERgMjkeb1LA8jZ5SLYXq+VBXWUVFInAl7INZZiwgspBgaY9TGTamcAo0mJ/sny | |
// x8Cy3njwV0l/XFyAYic8bUqTbbYlqzERIXOsh4q/RozPlE9x0MHmkA== | |
private static let publicStr = """ | |
MIICCgKCAgEAqDJ9WzJabeHGp6xyqeTjSTwocp0so6MVun25f64Ty//ACeh249hlcUu9DRPfhkTE | |
qwXjvuPXvT+fDD8FCJvf+aJ2XmyDvpA2TTtixDa9O/w1edWRlVlGK/SOsebJBiIFM5qUzzB9pb7N | |
3JC5Hhx8FI4Bzi38hZuQAh1nPByVzHwqaaXekqmgFNzqqsPgkFtLi39bnv0UdHE043eWjgSZYZvn | |
uNusqZzJuC8qPDoDlF8ww4+yd5g407EjdPK8RIMKqmYyZB4i8GWCEtlYkMGS0P01XexZBq2yFzmg | |
mvUSViRmFGxctCM1+ZCBwaWy9b+uSMA8xanZ5kWkw7R+qI8bFc22GldB8CQRUNQnMHSU0zqO4Vk7 | |
mvKzg25HH0VtiAeTiYP0kITitZHzbiQnaBDDWhgR7irKsWxdPvFzhy+hEiqMya5fO2DFZ/b7L+pl | |
00lYfbu2/e9zj8rEW9SbZqWT/MElISzj46m93IUq9z+56Xd2ySgDnsBxXYmYRPUSza0y9IOiJ7xa | |
lXFavQNoImNB4bXbF8GOerL1dZmzrCH0GVXKYXi8j2Gaxxo8GSauR9cUQC33Gv1HJL/sc13X4jLc | |
TNHK9r2/v+m6HEmG+IKibxhPXuGYJ4Foc+ORfwEqPCIEwwRY4MftVUb1nnAqy91az6f9O8GZMIjN | |
gN0mbnxaA00CAwEAAQ== | |
""" | |
static var publicKey: SecKey? | |
static func initialize() { | |
guard let key = Asymmetric.string2key(str: Asymmetric.publicStr) else { fatalError("FAILED TO CREATE PUBLIC KEY!") } | |
publicKey = key | |
} | |
private static func string2key(str: String) -> SecKey? { | |
guard | |
let data = Data(base64Encoded: str, options: [.ignoreUnknownCharacters]), | |
let key = data2secKey(keyData: data) | |
else { return nil } | |
return key | |
} | |
private static func data2secKey(keyData: Data) -> SecKey? { | |
var error:Unmanaged<CFError>? | |
let attrs: [CFString: Any] = [ | |
kSecAttrKeyClass: kSecAttrKeyClassPublic, | |
kSecAttrKeyType: keyType, | |
//kSecAttrKeySizeInBits: keySize, | |
//kSecReturnPersistentRef: 1, | |
] | |
let key = SecKeyCreateWithData(keyData as CFData, attrs as CFDictionary, &error) | |
if let err: Error = error?.takeRetainedValue() { | |
//let nsError: NSError = realErr | |
print("data2secKey ERR: \(err.localizedDescription)") | |
} | |
return key | |
} | |
static func encryptData(data: Data) -> Data? { | |
guard let key = Asymmetric.publicKey else { fatalError("Impossible") } | |
var error: Unmanaged<CFError>? | |
let cfData: CFData = data as NSData as CFData | |
guard SecKeyIsAlgorithmSupported(key, .encrypt, algorithm) else { | |
fatalError("Can't use this algorithm with this key!") | |
} | |
if let encryptedCFData = SecKeyCreateEncryptedData(key, algorithm, cfData, &error) { | |
return encryptedCFData as NSData as Data | |
} | |
if let err: Error = error?.takeRetainedValue() { | |
print("Error \(err.localizedDescription)") | |
} | |
return nil | |
} | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// | |
// AsymmetricTest.swift | |
// | |
// Created by David Hoerl on 12/23/18. | |
// Copyright © 2018 David Hoerl. All rights reserved. | |
// | |
/* | |
Apple explaines why to use these settings and why it works. In essense, Apple creates a Symmetric key | |
and embeds it in the payload, which is itself encrypted with the symmetric key. | |
See: https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/using_keys_for_encryption | |
Search for "In fact, the certificate, key, and trust services API provides a simple way to accomplish this." | |
https://stackoverflow.com/questions/53807792/how-to-implement-asymmetric-cryptography-for-distributed-app-where-keys-can-both | |
*/ | |
#if true | |
private let keyType = kSecAttrKeyTypeRSA // kSecAttrKeyTypeEC | |
private let algorithm = SecKeyAlgorithm.rsaEncryptionOAEPSHA512AESGCM // EncryptionOAEPSHA512AESGCM | |
private let keySize = 4096 // SecKey.h states that with this size, you get AES 256-bit encoding of the payload | |
#else | |
private let keyType = kSecAttrKeyTypeECSECPrimeRandom // kSecAttrKeyTypeECSECPrimeRandom | |
private let algorithm = SecKeyAlgorithm.eciesEncryptionCofactorVariableIVX963SHA512AESGCM | |
private let keySize = 384 // SecKey.h states that with this size, you get AES 256-bit encoding of the payload | |
#endif | |
@objcMembers | |
final class Asymmetric: NSObject { | |
// Some Key pair I generated - replace with your own | |
private let publicStr = """ | |
BFZjQQZVrcHitn13Af89ASrRT2VVPa4yGCreBJim52R/d3yJj3iTroanc7XW+YLJpijFBMei6ddf | |
lb2PjJLvXNJy8hQItCFRlpbGj7ddSCOuBNyjQP+cpmddgFhy8KCbgw== | |
""" | |
private let privateStr = """ | |
BFZjQQZVrcHitn13Af89ASrRT2VVPa4yGCreBJim52R/d3yJj3iTroanc7XW+YLJpijFBMei6ddf | |
lb2PjJLvXNJy8hQItCFRlpbGj7ddSCOuBNyjQP+cpmddgFhy8KCbg+Sy8M4IjGDI5gdzNmWhDQp2 | |
mggdySIqrjVobCL5NcAg5utA/2QdJGCy9mPw0GkFHg== | |
""" | |
var publicKey: Data = Data() | |
var privateKey: Data = Data() | |
func test(_ testData: Data) -> Bool { | |
func key2string(key: SecKey) -> String { | |
guard let keyData = secKey2data(key: key) else { fatalError("key2string FAILED!!!") } | |
let base64publicKey = keyData.base64EncodedString(options: [.lineLength76Characters, .endLineWithCarriageReturn]) | |
return base64publicKey | |
} | |
func string2key(str: String, cfType: CFString) -> SecKey? { | |
let d = Data(base64Encoded: str, options: [.ignoreUnknownCharacters]) | |
print("string2key: dataSize =", d?.count ?? "-1") | |
guard | |
let data = Data(base64Encoded: str, options: [.ignoreUnknownCharacters]), | |
let key = data2secKey(keyData: data, cfType: cfType) | |
else { return nil } | |
return key | |
} | |
func runTest(data testData: Data, keys: (public: SecKey, private: SecKey)) { | |
let d1 = Date() | |
let _ = self.encryptData(data: testData, key: keys.public) | |
print("Time:", -d1.timeIntervalSinceNow) // measure performance | |
if | |
let d1 = self.encryptData(data: testData, key: keys.public) | |
, | |
let d2 = self.decryptData(data: d1, key: keys.private) | |
{ | |
print("Input len:", d1.count, "outputLen:", d2.count) | |
print("Reconstructed data is the same as input data:", testData == d2 ? "YES" : "NO") | |
} else { | |
print("TEST FAILED") | |
} | |
} | |
#if true // set to true, then copy the two strings to publicStr and privateStr above and set this to false | |
guard let keys = createKey(keySize: keySize) else { print("WTF"); return false } // size is important smaller failed for me | |
print("PUBLIC:\n\(key2string(key: keys.public))\n") | |
print("PRIVATE:\n\(key2string(key: keys.private))\n") | |
runTest(data: testData, keys: keys) // Original Keys | |
do { // So suppose we have our public app - it gets the public key in base64 format | |
let base64key = key2string(key: keys.public) | |
guard let key = string2key(str: base64key, cfType: kSecAttrKeyClassPublic) else { fatalError("FAILED!") } | |
runTest(data: testData, keys: (key, keys.private)) // Reconstructed public | |
} | |
do { // So suppose we have our private app - it gets the private key in base64 format | |
let base64key = key2string(key: keys.private) | |
guard let key = string2key(str: base64key, cfType: kSecAttrKeyClassPrivate) else { fatalError("FAILED!") } | |
runTest(data: testData, keys: (keys.public, key)) // Reconstructed private | |
} | |
do { | |
let base64keyPublic = key2string(key: keys.public) | |
guard let keyPublic = string2key(str: base64keyPublic, cfType: kSecAttrKeyClassPublic) else { fatalError("FAILED!") } | |
let base64keyPrivate = key2string(key: keys.private) | |
guard let keyPrivate = string2key(str: base64keyPrivate, cfType: kSecAttrKeyClassPrivate) else { fatalError("FAILED!") } | |
runTest(data: testData, keys: (keyPublic, keyPrivate)) // Reconstructed private | |
} | |
#else | |
do { | |
guard let keyPublic = string2key(str: publicStr, cfType: kSecAttrKeyClassPublic) else { fatalError("FAILED!") } | |
guard let keyPrivate = string2key(str: privateStr, cfType: kSecAttrKeyClassPrivate) else { fatalError("FAILED!") } | |
runTest(data: testData, keys: (keyPublic, keyPrivate)) // Reconstructed private | |
} | |
#endif | |
return true | |
} | |
func encryptData(data: Data, key: SecKey) -> Data? { | |
//var status: OSStatus = noErr | |
var error: Unmanaged<CFError>? | |
let cfData: CFData = data as NSData as CFData | |
guard SecKeyIsAlgorithmSupported(key, .encrypt, algorithm) else { | |
fatalError("Can't use this algorithm with this key!") | |
} | |
if let encryptedCFData = SecKeyCreateEncryptedData(key, algorithm, cfData, &error) { | |
return encryptedCFData as NSData as Data | |
} | |
if let err: Error = error?.takeRetainedValue() { | |
print("encryptData error \(err.localizedDescription)") | |
} | |
return nil | |
} | |
func decryptData(data: Data, key: SecKey) -> Data? { | |
var error: Unmanaged<CFError>? | |
let cfData: CFData = data as NSData as CFData | |
guard SecKeyIsAlgorithmSupported(key, .decrypt, algorithm) else { | |
fatalError("Can't use this algorithm with this key!") | |
} | |
if let decryptedCFData = SecKeyCreateDecryptedData(key, algorithm, cfData, &error) { | |
return decryptedCFData as NSData as Data | |
} else { | |
if let err: Error = error?.takeRetainedValue() { | |
print("Error \(err.localizedDescription)") | |
} | |
return nil | |
} | |
} | |
func createKey(keySize: Int) -> (public: SecKey, private: SecKey)? { | |
var sanityCheck: OSStatus = 0 | |
let publicKeyAttr:[CFString: Any] = [ | |
kSecAttrIsPermanent : 0, | |
kSecAttrApplicationTag : "com.asymmetric.publickey".data(using: .ascii)! | |
] | |
let privateKeyAttr:[CFString: Any] = [ | |
kSecAttrIsPermanent : 0, | |
kSecAttrApplicationTag : "com.asymmetric.privatekey".data(using: .ascii)! | |
] | |
let keyPairAttr:[CFString: Any] = [ | |
kSecAttrKeyType : keyType, | |
kSecAttrKeySizeInBits : keySize, | |
kSecPrivateKeyAttrs : privateKeyAttr, | |
kSecPublicKeyAttrs : publicKeyAttr | |
] | |
var publicKey: SecKey? = nil | |
var privateKey: SecKey? = nil | |
sanityCheck = SecKeyGeneratePair(keyPairAttr as CFDictionary, &publicKey, &privateKey) | |
if sanityCheck == noErr { | |
return (publicKey!, privateKey!) | |
} else { | |
print("Fucked!") | |
return nil | |
} | |
} | |
func secKey2data(key: SecKey) -> Data? { | |
var error:Unmanaged<CFError>? | |
guard let keyData = SecKeyCopyExternalRepresentation(key, &error) as Data? else { error?.release(); return nil } | |
//print("secKey2data size \(keyData.count)") | |
return keyData | |
} | |
func data2secKey(keyData: Data, cfType: CFString) -> SecKey? { | |
var error:Unmanaged<CFError>? | |
let attrs: [CFString: Any] = [ | |
kSecAttrKeyType: keyType, | |
kSecAttrKeyClass: cfType | |
] | |
let key = SecKeyCreateWithData(keyData as CFData, attrs as CFDictionary, &error) | |
if let err: Error = error?.takeRetainedValue() { | |
//let nsError: NSError = realErr | |
print("data2secKey ERR: \(err.localizedDescription)") | |
} | |
return key | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The AsymmetricTest.swift is a test and explore vehicle for public/private key encryption. The Asymmetric.swift file is what is needed in the distributed app, where the public key can be places in clear text.
See my post on StackOverflow for a deeper description.