Created
August 28, 2015 06:43
-
-
Save dilawar/f7e783af0fadecec8f2a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# A text book example from MacKay. | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.lines as mlines | |
import matplotlib.patches as mpatches | |
def plotLetter(letter, itr): | |
black = '#000000'; white='#FFFFFF'; gray='#AAAAAA' | |
squareSide = 0.03 | |
plt.figure(figsize=(5,5)) | |
ax = plt.axes([0,0,6.5,6.5]) | |
# Plotting squares | |
for i in xrange(25): | |
coords = np.array([i%5*squareSide, (4-i/5)*squareSide]) | |
color = black if letter[i]< 0 else white | |
square = mpatches.Rectangle(coords, squareSide, squareSide, | |
color = color, linewidth=0.5) | |
ax.add_patch(square) | |
# Plotting grid | |
for i in xrange(6): | |
x = (5-i%5)*squareSide | |
s1, s2 = np.array([[x, x], [0, 5*squareSide]]) | |
ax.add_line(mlines.Line2D(s1, s2, lw=1, color = gray )) | |
ax.add_line(mlines.Line2D(s2, s1, lw=1, color = gray )) | |
outfile = 'pattern_recog_%s.png' % itr | |
print("Saving image to file %s" % outfile) | |
plt.savefig(outfile) | |
patterns = np.array([ | |
[-1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1.], # Letter D | |
[-1,-1,-1,-1,-1,1,1,1,-1,1,1,1,1,-1,1,-1,1,1,-1,1,-1,-1,-1,1,1.], # Letter J | |
[1,-1,-1,-1,-1,-1,1,1,1,1,-1,1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,-1.], # Letter C | |
[-1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,1,1,-1.],], # Letter M | |
dtype=np.float) | |
n = patterns.shape[0] | |
m = patterns.shape[1] | |
eta = 1./n | |
# training | |
weights = np.zeros((m,m)) | |
for i in xrange(m-1): | |
for j in xrange(i+1,m): | |
weights[i,j] = eta*np.dot(patterns[:,i], patterns[:,j]) | |
weights[j,i] = weights[i,j] | |
activations = np.zeros(m) | |
states = np.array([1,1,1,1,-1,1,-1,1,1,-1,1,1,-1,1,1,1,1,1,1,-1,-1,1,1,1,1], | |
dtype=np.float) | |
plotLetter(states, -1) | |
# recalling | |
np.random.seed(10) | |
for itr in range(4): | |
for i in np.random.permutation(m): # asynchronous activation | |
activations[i] = np.dot(weights[i,:], states) | |
states[i]=np.tanh(activations[i]) | |
plotLetter(states, itr) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment