Created
April 30, 2020 17:13
-
-
Save diofeher/d0fd08873c8b9a591c0bff9007e3f454 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from z3 import Solver, Ints, Or, And, Not, sat | |
x, y, z = Ints('x y z') | |
s = Solver() | |
s.add(x >= 0, x <= 9) | |
s.add(y >= 0, y <= 9) | |
s.add(z >= 0, z <= 9) | |
# 6 3 7 -> nada está correto | |
s.add(x != 6, x != 3, x != 7) | |
s.add(y != 6, y != 3, y != 7) | |
s.add(z != 6, z != 3, z != 7) | |
# 6 7 4 -> um numero correto mas no lugar errado | |
s.add( | |
Or( | |
And(x == 7, Not(y == 6), Not(z == 6), Not(y == 4), Not(z == 4)), | |
And(x == 4, Not(y == 6), Not(z == 6), Not(y == 7), Not(z == 7)), | |
And(y == 6, Not(x == 7), Not(z == 7), Not(x == 4), Not(z == 4)), | |
And(y == 4, Not(x == 6), Not(z == 6), Not(x == 7), Not(z == 7)), | |
And(z == 6, Not(x == 7), Not(y == 7), Not(x == 4), Not(y == 4)), | |
And(z == 7, Not(x == 6), Not(y == 6), Not(x == 4), Not(y == 4)), | |
) | |
) | |
# 2 7 8 -> um numero correto no lugar correto | |
s.add( | |
Or( | |
And(x == 2, Not(y == 7), Not(z == 8)), | |
And(Not(x == 2), y == 7, Not(z == 8)), | |
And(Not(x == 2), Not(y == 7), z == 8), | |
) | |
) | |
# 8 4 2 -> dois numeros corretos, mas no lugar errado | |
s.add( | |
Or( | |
And(x == 4, y == 2, Not(z == 8)), | |
And(x == 2, y == 8, Not(z == 4)), | |
And(x == 4, z == 8, Not(y == 2)), | |
And(x == 2, z == 4, Not(y == 8)), | |
And(y == 8, z == 4, Not(x == 2)), | |
And(y == 2, z == 8, Not(x == 4)), | |
) | |
) | |
# 2 1 5 -> um numero correto mas no lugar errado | |
s.add( | |
Or( | |
And(x == 1, Not(y == 2), Not(z == 2), Not(y == 5), Not(z == 5)), | |
And(x == 5, Not(y == 2), Not(z == 2), Not(y == 1), Not(z == 1)), | |
And(y == 2, Not(x == 1), Not(z == 1), Not(x == 5), Not(z == 5)), | |
And(y == 5, Not(x == 2), Not(z == 2), Not(x == 1), Not(z == 1)), | |
And(z == 2, Not(x == 1), Not(y == 1), Not(x == 5), Not(y == 5)), | |
And(z == 1, Not(x == 2), Not(y == 2), Not(x == 5), Not(y == 5)), | |
) | |
) | |
def getDifferentSolution(solut, md, *params): | |
for p in params: | |
solut.add(Or([p[i] != md.eval(p[i]) for i in range(len(p))])) | |
numsolutions = 0 | |
while s.check() == sat: | |
numsolutions += 1 | |
mod = s.model() | |
print(mod) | |
getDifferentSolution(s, mod, [x, y, z]) | |
print('Number of solutions:', numsolutions) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment