Created
September 20, 2019 11:03
-
-
Save dipanjanS/0f4134764abff749723c1f97b29e28ab to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # create serving function | |
| def predict_apparel_model2_serving(img, img_dims=(32,32), label_map=class_names): | |
| sample_img_processed = (np.array([resize_image_array(img, | |
| img_size_dims=img_dims) | |
| for img in np.stack([[img]]*3, | |
| axis=-1)])) / 255. | |
| data = json.dumps({"signature_name": "serving_default", | |
| "instances": sample_img_processed.tolist()}) | |
| HEADERS = {'content-type': 'application/json'} | |
| MODEL2_API_URL = 'http://localhost:8501/v1/models/fashion_model_serving/versions/2:predict' | |
| json_response = requests.post(MODEL2_API_URL, data=data, headers=HEADERS) | |
| prediction = json.loads(json_response.text)['predictions'] | |
| prediction = np.argmax(np.array(prediction), axis=1)[0] | |
| return label_map[prediction] | |
| # benchmark 10K requests | |
| %%time | |
| pred_labels = [] | |
| for img in tqdm(test_images): | |
| pred_label = predict_apparel_model2_serving(img) | |
| pred_labels.append(img) | |
| len(pred_labels) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment