Skip to content

Instantly share code, notes, and snippets.

@dipanjanS
Created September 20, 2019 08:01
Show Gist options
  • Select an option

  • Save dipanjanS/7ba068d3729ad4eba21c800ffe0c46df to your computer and use it in GitHub Desktop.

Select an option

Save dipanjanS/7ba068d3729ad4eba21c800ffe0c46df to your computer and use it in GitHub Desktop.
import os
from sklearn.metrics import confusion_matrix, classification_report
import pandas as pd
# save model
if not os.path.isdir('model_weights/'):
os.mkdir('model_weights/')
model.save_weights(filepath='model_weights/cnn_model1_wt.h5', overwrite=True)
# load model (can be used in the future as needed once trained)
model = create_cnn_architecture_model1(input_shape=INPUT_SHAPE)
model.load_weights('model_weights/cnn_model1_wt.h5')
# predict and evaluate on test dataset
test_images_scaled = test_images_gr / 255.
predictions = model.predict(test_images_scaled)
prediction_labels = np.argmax(predictions, axis=1)
print(classification_report(test_labels, prediction_labels,
target_names=class_names))
pd.DataFrame(confusion_matrix(test_labels, prediction_labels),
index=class_names, columns=class_names)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment