Created
August 15, 2019 08:05
-
-
Save dipanjanS/cb22c436845b17c34317e4215c837a0d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# utility function to pass inputs to specific model layers | |
def map2layer(x, layer): | |
feed_dict = dict(zip([model.layers[0].input], [preprocess_input(x.copy())])) | |
return K.get_session().run(model.layers[layer].input, feed_dict) | |
# focus on the 7th layer of CNN model | |
print(model.layers[7].input) | |
Out [46]: <tf.Tensor 'block2_pool_2/MaxPool:0' shape=(?, 56, 56, 128) dtype=float32> | |
# make model predictions | |
e = shap.GradientExplainer((model.layers[7].input, model.layers[-1].output), | |
map2layer(preprocess_input(X.copy()), 7)) | |
shap_values, indexes = e.shap_values(map2layer(to_predict, 7), ranked_outputs=2) | |
index_names = np.vectorize(lambda x: class_names[str(x)][1])(indexes) | |
print(index_names) | |
Out [47]: array([['chain', 'chain_mail'], | |
['great_grey_owl', 'prairie_chicken'], | |
['desktop_computer', 'screen'], | |
['Egyptian_cat', 'tabby']], dtype='<U16') | |
# visualize model decisions | |
visualize_model_decisions(shap_values=shap_values, x=to_predict, | |
labels=index_names, figsize=(20, 40)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment