Skip to content

Instantly share code, notes, and snippets.

@enachb
enachb / cel-rule-engine-design.md
Created February 3, 2026 02:36
Sensemesh Agentic CEL Rule Engine - System Design Document

System Design Document: Agentic CEL Rule Engine

Status: Draft v1.0 Author: Sensemesh Architecture Team Context: Event-Driven Architecture, gRPC/Protobuf, Go, NATS


1. Executive Summary

@daohoamh
daohoamh / decon_20260203_093624.html
Created February 3, 2026 02:36
BMP De_con Online 20260203_093624
<!DOCTYPE html>
<html lang="vi"><head>
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate" />
<meta http-equiv="Pragma" content="no-cache" />
<meta http-equiv="Expires" content="0" /><meta charset="UTF-8"><title>BÀI 13 PHẦN I</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script>
window.MathJax = {
tex: {
@usrnatc
usrnatc / win32_x87_maths.asm
Created February 3, 2026 02:35
collection of x87 maths routines
align(16)
PowF32 proc
movss dword ptr [rsp + 8], xmm0
movss dword ptr [rsp + 16], xmm1
fld dword ptr [rsp + 16]
fld dword ptr [rsp + 8]
fyl2x
fld st(0)
frndint
fsub st(1), st(0)
@damnordicus
damnordicus / gist:9e30e22cd96862800aeb12c95a5bb1d3
Created February 3, 2026 02:35
app sidebar component using recursive collapsible components
<script lang="ts">
import * as Sidebar from "$lib/components/ui/sidebar/index.js";
import Separator from "./ui/separator/separator.svelte";
import { DoorOpenIcon, User, ChevronDown, LogIn } from "@lucide/svelte";
import { useSidebar } from "$lib/components/ui/sidebar/index.js";
import { Collapsible } from "bits-ui";
import { navItems, type NavItem } from "$lib/utils";
const settingsMenu = [
{
@HugsLibRecordKeeper
HugsLibRecordKeeper / output_log.txt
Created February 3, 2026 02:35
Rimworld output log published using HugsLib
Log uploaded on Tuesday, February 3, 2026, 2:35:21 AM
Loaded mods:
Harmony(brrainz.harmony)[mv:2.4.2.0]: 0Harmony(2.4.1), HarmonyMod(2.4.2)
Core(Ludeon.RimWorld): (no assemblies)
Royalty(Ludeon.RimWorld.Royalty): (no assemblies)
Ideology(Ludeon.RimWorld.Ideology): (no assemblies)
Biotech(Ludeon.RimWorld.Biotech): (no assemblies)
Anomaly(Ludeon.RimWorld.Anomaly): (no assemblies)
Odyssey(Ludeon.RimWorld.Odyssey): (no assemblies)
Adaptive Storage Framework(adaptive.storage.framework): 0MultiplayerAPI(av:0.5.0,fv:0.5.0), 1ITransformable(1.0.0), AdaptiveStorageFramework(1.2.4), CopyOperation(1.0.0), DefNameLink(1.0.0), GeneratorOperation(1.0.0), GeneratorOperationV2(1.0.0), PatchOperationSet(1.0.0), PatchOperationTryAdd(1.0.0), PostInheritanceOperation(1.0.0), SaveGameCompatibility(1.0.0)
@suszurani
suszurani / readme.md
Created February 3, 2026 02:34
VER.Pe𝘭𝘪𝘤ula El agente secreto (2025) 𝙶r𝚊𝚝𝚒s 𝙾𝚗line 𝚎𝚗 𝙴𝚜paño𝚕
image

El agente secreto 𝐏𝚎li𝚌𝐮l𝚊 𝙾𝐧li𝚗𝚎 es un thriller dramático e histórico con tintes neo‑noir que explora el miedo, la represión y la lucha por la libertad en un período oscuro de Brasil. Ambientada en 1977, durante la dictadura militar, la película sigue a Marcelo (interpretado por Wagner Moura), un profesor universitario y experto en tecnología que regresa a Recife con la esperanza de reencontrarse con su hijo menor, solo para descubrir que la ciudad está lejos de ser un refugio seguro.

La narrativa combina suspense, política y acción contenida, mostrando cómo Marcelo debe ocultarse, cambiar de identidad y buscar ayuda en un entorno marcado por la vigilancia, la paranoia y la violencia institucional. A través de personajes que incluyen activistas, fugitivos y aliados inesperados, la historia revela

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Contador Lucasx</title>
<style>
body {
margin: 0;
background: transparent;
font-family: Arial, sans-serif;
@freederia
freederia / Adaptive_Reinforcement_Learning_for_Dynamic_Task_Allocation_in_Multi-Agent_Cooperative_Robotic_Const.md
Created February 3, 2026 02:34
[DOCS] Adaptive Reinforcement Learning for Dynamic Task Allocation in Multi-Agent Cooperative Robotic Construction (Published: 2026-02-03 11:34:12)

Adaptive Reinforcement Learning for Dynamic Task Allocation in Multi-Agent Cooperative Robotic Construction

Abstract: This paper proposes a novel reinforcement learning (RL) framework for dynamic task allocation in multi-agent cooperative robotic construction. Existing task allocation approaches often rely on pre-defined strategies or centralized planners, which struggle to adapt to unforeseen circumstances and exhibit limited scalability. Our approach, Adaptive Reinforcement Learning for Dynamic Task Allocation (ARL-DTA), utilizes decentralized agents trained through a multi-agent RL paradigm to dynamically assign tasks, optimizing for efficiency, robustness, and adaptability in complex robotic construction environments. The system leverages a hierarchical reward structure and a novel state representation encompassing both local agent observations and global construction progress to facilitate effective collaborative decision-making. Through comprehensive simulations, we demonstrate ARL-DTA's superior

alert("Hola mundo_editado");
console.log("cambios en el archivo");