Created
February 20, 2019 03:47
-
-
Save disktnk/f9a0b0ec12daf8f39d09fc86ade2a08e to your computer and use it in GitHub Desktop.
`pytest`
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def test_bn_onnxruntime(): | |
import numpy as np | |
import onnx | |
# this code is from ONNX BatchNomalization example | |
# https://github.com/onnx/onnx/blob/master/onnx/backend/test/case/node/batchnorm.py | |
def _batchnorm_test_mode(x, s, bias, mean, var, epsilon=1e-5): # type: ignore | |
dims_x = len(x.shape) | |
dim_ones = (1,) * (dims_x - 2) | |
s = s.reshape(-1, *dim_ones) | |
bias = bias.reshape(-1, *dim_ones) | |
mean = mean.reshape(-1, *dim_ones) | |
var = var.reshape(-1, *dim_ones) | |
return s * (x - mean) / np.sqrt(var + epsilon) + bias | |
# input size: (1, 2, 1, 3) | |
x = np.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(np.float32) | |
s = np.array([1.0, 1.5]).astype(np.float32) | |
bias = np.array([0, 1]).astype(np.float32) | |
mean = np.array([0, 3]).astype(np.float32) | |
var = np.array([1, 1.5]).astype(np.float32) | |
y = _batchnorm_test_mode(x, s, bias, mean, var).astype(np.float32) | |
node = onnx.helper.make_node( | |
'BatchNormalization', | |
inputs=['x', 's', 'bias', 'mean', 'var'], | |
outputs=['y'], | |
) | |
inputs = [x, s, bias, mean, var] | |
outputs = [y] | |
# this code is from ONNX expect function | |
# https://github.com/onnx/onnx/blob/master/onnx/backend/test/case/node/__init__.py | |
def _extract_value_info(arr, name): # type: (np.ndarray, Text) -> onnx.ValueInfoProto | |
return onnx.helper.make_tensor_value_info( | |
name=name, | |
elem_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[arr.dtype], | |
shape=arr.shape) | |
present_inputs = [x for x in node.input if (x != '')] | |
present_outputs = [x for x in node.output if (x != '')] | |
inputs_vi = [_extract_value_info(arr, arr_name) | |
for arr, arr_name in zip(inputs, present_inputs)] | |
outputs_vi = [_extract_value_info(arr, arr_name) | |
for arr, arr_name in zip(outputs, present_outputs)] | |
graph = onnx.helper.make_graph( | |
nodes=[node], | |
name='test_batchnorm_example', | |
inputs=inputs_vi, | |
outputs=outputs_vi) | |
opset_version = 8 # 9 is failed by "GENERAL ERROR", 7 and 8 are succeeded | |
model = onnx.helper.make_model( | |
graph, | |
producer_name='backend-test', | |
opset_imports=[onnx.helper.make_opsetid('', opset_version)] | |
) | |
import onnxruntime as rt | |
sess = rt.InferenceSession(model.SerializeToString()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment