Last active
March 21, 2025 22:06
-
-
Save disler/c404a68002bcd05ff41023f9e7868af4 to your computer and use it in GitHub Desktop.
Python LLM Starter Module
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Purpose: | |
Interact with the UPDATED OpenAI API Supports 1.2.3+ | |
Provide supporting prompt engineering functions. | |
""" | |
""" | |
Purpose: | |
Interact with the OpenAI API. | |
Provide supporting prompt engineering functions. | |
""" | |
from dataclasses import dataclass | |
import json | |
import sys | |
from dotenv import load_dotenv | |
import os | |
from typing import Any, Dict, List, Callable | |
import openai | |
import tiktoken | |
# load .env file | |
load_dotenv() | |
assert os.environ.get("OPENAI_API_KEY") | |
# get openai api key | |
openai.api_key = os.environ.get("OPENAI_API_KEY") | |
# ------------------ helpers ------------------ | |
@dataclass | |
class TurboTool: | |
name: str # function name | |
config: dict # open ai config | |
function: Callable # function | |
def safe_get(data, dot_chained_keys): | |
""" | |
{'a': {'b': [{'c': 1}]}} | |
safe_get(data, 'a.b.0.c') -> 1 | |
""" | |
keys = dot_chained_keys.split(".") | |
for key in keys: | |
try: | |
if isinstance(data, list): | |
data = data[int(key)] | |
else: | |
data = data[key] | |
except (KeyError, TypeError, IndexError): | |
return None | |
return data | |
def response_parser(response: Dict[str, Any]): | |
return safe_get(response, "choices.0.message.content") | |
# ------------------ content generators ------------------ | |
def prompt( | |
prompt: str, | |
model: str = "gpt-4-1106-preview", | |
instructions: str = "You are a helpful assistant.", | |
) -> str: | |
""" | |
Generate a response from a prompt using the OpenAI API. | |
""" | |
if not openai.api_key: | |
sys.exit( | |
""" | |
ERORR: OpenAI API key not found. Please export your key to OPENAI_API_KEY | |
Example bash command: | |
export OPENAI_API_KEY=<your openai apikey> | |
""" | |
) | |
response = openai.chat.completions.create( | |
model=model, | |
messages=[ | |
{ | |
"role": "system", | |
"content": instructions, # Added instructions as a system message | |
}, | |
{ | |
"role": "user", | |
"content": prompt, | |
}, | |
], | |
) | |
return response_parser(response.model_dump()) | |
def prompt_func( | |
prompt: str, | |
turbo_tools: List[TurboTool], | |
model: str = "gpt-4-1106-preview", | |
instructions: str = "You are a helpful assistant.", | |
) -> str: | |
""" | |
Generate a response from a prompt using the OpenAI API. | |
Force function calls to the provided turbo tools. | |
:param prompt: The prompt to send to the model. | |
:param turbo_tools: List of TurboTool objects each containing the tool's name, configuration, and function. | |
:param model: The model version to use, default is 'gpt-4-1106-preview'. | |
:return: The response generated by the model. | |
""" | |
messages = [{"role": "user", "content": prompt}] | |
tools = [turbo_tool.config for turbo_tool in turbo_tools] | |
tool_choice = ( | |
"auto" | |
if len(turbo_tools) > 1 | |
else {"type": "function", "function": {"name": turbo_tools[0].name}} | |
) | |
messages.insert( | |
0, {"role": "system", "content": instructions} | |
) # Insert instructions as the first system message | |
response = openai.chat.completions.create( | |
model=model, messages=messages, tools=tools, tool_choice=tool_choice | |
) | |
response_message = response.choices[0].message | |
tool_calls = response_message.tool_calls | |
func_responses = [] | |
if tool_calls: | |
messages.append(response_message) | |
for tool_call in tool_calls: | |
for turbo_tool in turbo_tools: | |
if tool_call.function.name == turbo_tool.name: | |
function_response = turbo_tool.function( | |
**json.loads(tool_call.function.arguments) | |
) | |
func_responses.append(function_response) | |
message_to_append = { | |
"tool_call_id": tool_call.id, | |
"role": "tool", | |
"name": turbo_tool.name, | |
"content": function_response, | |
} | |
messages.append(message_to_append) | |
break | |
return func_responses | |
def prompt_json_response( | |
prompt: str, | |
model: str = "gpt-4-1106-preview", | |
instructions: str = "You are a helpful assistant.", | |
) -> str: | |
""" | |
Generate a response from a prompt using the OpenAI API. | |
Example: | |
res = llm.prompt_json_response( | |
f"You're a data innovator. You analyze SQL databases table structure and generate 3 novel insights for your team to reflect on and query. | |
Generate insights for this this prompt: {prompt}. | |
Format your insights in JSON format. Respond in this json format [{{insight, sql, actionable_business_value}}, ...]", | |
) | |
""" | |
if not openai.api_key: | |
sys.exit( | |
""" | |
ERORR: OpenAI API key not found. Please export your key to OPENAI_API_KEY | |
Example bash command: | |
export OPENAI_API_KEY=<your openai apikey> | |
""" | |
) | |
response = openai.chat.completions.create( | |
model=model, | |
messages=[ | |
{ | |
"role": "system", | |
"content": instructions, # Added instructions as a system message | |
}, | |
{ | |
"role": "user", | |
"content": prompt, | |
}, | |
], | |
response_format={"type": "json_object"}, | |
) | |
return response_parser(response.model_dump()) | |
def add_cap_ref( | |
prompt: str, prompt_suffix: str, cap_ref: str, cap_ref_content: str | |
) -> str: | |
""" | |
Attaches a capitalized reference to the prompt. | |
Example | |
prompt = 'Refactor this code.' | |
prompt_suffix = 'Make it more readable using this EXAMPLE.' | |
cap_ref = 'EXAMPLE' | |
cap_ref_content = 'def foo():\n return True' | |
returns 'Refactor this code. Make it more readable using this EXAMPLE.\n\nEXAMPLE\n\ndef foo():\n return True' | |
""" | |
new_prompt = f"""{prompt} {prompt_suffix}\n\n{cap_ref}\n\n{cap_ref_content}""" | |
return new_prompt | |
def count_tokens(text: str): | |
""" | |
Count the number of tokens in a string. | |
""" | |
enc = tiktoken.get_encoding("cl100k_base") | |
return len(enc.encode(text)) | |
map_model_to_cost_per_1k_tokens = { | |
"gpt-4": 0.075, # ($0.03 Input Tokens + $0.06 Output Tokens) / 2 | |
"gpt-4-1106-preview": 0.02, # ($0.01 Input Tokens + $0.03 Output Tokens) / 2 | |
"gpt-4-1106-vision-preview": 0.02, # ($0.01 Input Tokens + $0.03 Output Tokens) / 2 | |
"gpt-3.5-turbo-1106": 0.0015, # ($0.001 Input Tokens + $0.002 Output Tokens) / 2 | |
} | |
def estimate_price_and_tokens(text, model="gpt-4"): | |
""" | |
Conservative estimate the price and tokens for a given text. | |
""" | |
# round up to the output tokens | |
COST_PER_1k_TOKENS = map_model_to_cost_per_1k_tokens[model] | |
tokens = count_tokens(text) | |
estimated_cost = (tokens / 1000) * COST_PER_1k_TOKENS | |
# round | |
estimated_cost = round(estimated_cost, 2) | |
return estimated_cost, tokens |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Purpose: | |
Interact with the OpenAI API. | |
Provide supporting prompt engineering functions. | |
""" | |
import sys | |
from dotenv import load_dotenv | |
import os | |
from typing import Any, Dict | |
import openai | |
# load .env file | |
load_dotenv() | |
assert os.environ.get("OPENAI_API_KEY") | |
# get openai api key | |
openai.api_key = os.environ.get("OPENAI_API_KEY") | |
# ------------------ helpers ------------------ | |
def safe_get(data, dot_chained_keys): | |
""" | |
{'a': {'b': [{'c': 1}]}} | |
safe_get(data, 'a.b.0.c') -> 1 | |
""" | |
keys = dot_chained_keys.split(".") | |
for key in keys: | |
try: | |
if isinstance(data, list): | |
data = data[int(key)] | |
else: | |
data = data[key] | |
except (KeyError, TypeError, IndexError): | |
return None | |
return data | |
def response_parser(response: Dict[str, Any]): | |
return safe_get(response, "choices.0.message.content") | |
# ------------------ content generators ------------------ | |
def prompt(prompt: str, model: str = "gpt-4") -> str: | |
# validate the openai api key - if it's not valid, raise an error | |
if not openai.api_key: | |
sys.exit( | |
""" | |
ERORR: OpenAI API key not found. Please export your key to OPENAI_API_KEY | |
Example bash command: | |
export OPENAI_API_KEY=<your openai apikey> | |
""" | |
) | |
response = openai.ChatCompletion.create( | |
model=model, | |
messages=[ | |
{ | |
"role": "user", | |
"content": prompt, | |
} | |
], | |
) | |
return response_parser(response) | |
def add_cap_ref( | |
prompt: str, prompt_suffix: str, cap_ref: str, cap_ref_content: str | |
) -> str: | |
""" | |
Attaches a capitalized reference to the prompt. | |
Example | |
prompt = 'Refactor this code.' | |
prompt_suffix = 'Make it more readable using this EXAMPLE.' | |
cap_ref = 'EXAMPLE' | |
cap_ref_content = 'def foo():\n return True' | |
returns 'Refactor this code. Make it more readable using this EXAMPLE.\n\nEXAMPLE\n\ndef foo():\n return True' | |
""" | |
new_prompt = f"""{prompt} {prompt_suffix}\n\n{cap_ref}\n\n{cap_ref_content}""" | |
return new_prompt |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment