Last active
August 29, 2015 13:56
-
-
Save djhocking/9275336 to your computer and use it in GitHub Desktop.
Open Population Hierarchical Abundance Model with Removal Sampling
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Model | |
cat(" | |
model{ | |
# Abundance Priors | |
a.N ~ dnorm(0, 0.01) | |
b.elev ~ dnorm(0, 0.01) | |
#b.elev2 ~ dnorm(0, 0.01) | |
#b.slope ~ dnorm(0, 0.01) | |
b.drainage ~ dnorm(0, 0.01) | |
b.hardwood ~ dnorm(0, 0.01) | |
b.softwood ~ dnorm(0, 0.01) | |
b.herb ~ dnorm(0, 0.01) | |
b.cwd ~ dnorm(0, 0.01) | |
b.litter ~ dnorm(0, 0.01) | |
b.trap ~ dnorm(0, 0.01) | |
b.stems ~ dnorm(0, 0.01) | |
b.year2 ~ dnorm(0, 0.01) | |
b.year3 ~ dnorm(0, 0.01) | |
gam1 ~ dnorm(0, 0.01) | |
# Random priors | |
for(i in 1:nsites){ | |
b.site[i] ~ dnorm(0, tau.site) | |
gam0[i] ~ dnorm(0, tau.gam0) | |
} | |
# Hyperpriors for random effects | |
sigma.site ~ dunif(0, 10) | |
tau.site <- 1/(sigma.site*sigma.site) | |
sigma.gam0 ~ dunif(0, 5) | |
tau.gam0 <- 1/(sigma.gam0*sigma.gam0) | |
# Detection Priors | |
p0 ~ dunif(-4, 4) | |
#logitp0 <- log(p0/(1-p0)) | |
p.precip ~ dunif(-3, 3) | |
p.trap ~ dunif(-3, 3) | |
# p.day ~ dunif(-3, 3) | |
# First Closed Period | |
for(k in 1:1){ | |
for(i in 1:nplots){ | |
fac[i,1,k] <- 1 | |
p[i,1,k] <- p0 + p.precip*precip[i,1] + p.trap*traptype[i] | |
mu[i,1,k] <- p[i,1,k] | |
for(j in 2:8){ | |
# Detection for closed period 1 | |
p[i,j,k] <- p0 + p.precip*precip[i,j] + p.trap*traptype[i] | |
fac[i,j,k] <- fac[i,j-1,k] * (1 - p[i,j-1,k]) | |
mu[i,j,k] <- p[i,j,k] * fac[i,j,k] | |
} | |
mu0[i,k] <- sum(mu[i,1:8,k]) | |
pi0[i,k] <- 1 - mu0[i,k] | |
pcap[i,k] <- 1 - pi0[i,k] # redundant with mu0 | |
for(j in 1:8){ | |
muc[i,j,k] <- mu[i,j,k]/pcap[i,k] | |
} | |
# Multinomial Logit??? | |
mu0[i,k] <- sum(exp(mu[i,1:8,k])) | |
for(j in 1:8){ | |
muc[i,j,k] <- exp(mu[i,j,k])/mu0[i,j,k] | |
} | |
# Abundance for closed period 1 | |
log(lambda[i])<- a.N + b.site[site[i]] + b.drainage*drainage[i] + b.softwood*softwood[i] + b.herb*herb[i] + b.cwd*cwd[i] + b.litter*litter[i] + b.stems*stems[i] + b.trap*traptype[i] + b.year2*year2[i] + b.year3*year3[i] + b.elev*elev[i] + b.hardwood*hardwood[i]# + b.elev2*elev[i]^2 + b.slope*slope[i] | |
N[i,k] ~ dpois(lambda[i]) | |
ncap[i,k] ~ dbin(pcap[i,k],N[i,k]) | |
y[i,1:8] ~ dmulti(muc[i,1:8,k], ncap[i,k]) | |
# Open Period Change in Abundance | |
gamma[i] <- min(exp(gam0[site[i]] + gam1*N[i,1]), 500) | |
} | |
} | |
# Second Closed Period | |
for(k in 2:2){ | |
for(i in 1:nplots){ | |
fac[i,1,k] <- 1 | |
p[i,1,k] <- p0 + p.precip*precip[i,9] + p.trap*traptype[i] | |
mu[i,1,k] <- p[i,1,k] | |
for(j in 2:8){ | |
# Detection for closed period 1 | |
p[i,j,k] <- p0 + p.precip*precip[i,j+8] + p.trap*traptype[i] | |
fac[i,j,k] <- fac[i,j-1,k] * (1 - p[i,j-1,k]) | |
mu[i,j,k] <- p[i,j,k] * fac[i,j,k] | |
} | |
mu0[i,k] <- sum(mu[i,1:8,k]) | |
pi0[i,k] <- 1 - mu0[i,k] | |
pcap[i,k] <- 1 - pi0[i,k] | |
for(j in 1:8){ | |
muc[i,j,k] <- mu[i,j,k]/pcap[i,k] | |
} | |
# Multinomial Logit??? | |
mu0[i,k] <- sum(exp(mu[i,1:8,k])) | |
for(j in 1:8){ | |
muc[i,j,k] <- exp(mu[i,j,k])/mu0[i,j,k] | |
} | |
N[i,k] ~ dpois(gamma[i]) | |
ncap[i,k] ~ dbin(pcap[i,k],N[i,k]) | |
y[i,9:16] ~ dmulti(muc[i,1:8,k], ncap[i,k]) | |
} | |
} | |
### compute a bunch of fit-related stuff for Bayesian | |
### p-values..... | |
for(i in 1:nplots){ | |
y.fit[i,1:8] ~ dmulti(muc[i,1:8,1],ncap[i,1]) | |
y.fit[i,9:16] ~ dmulti(muc[i,1:8,2],ncap[i,2]) | |
for(k in 1:2){ | |
ncap.fit[i,k] ~ dbin(pcap[i,k],N[i,k]) | |
} | |
for(t in 1:8){ | |
e1[i,t]<- muc[i,t,1]*ncap[i,1] | |
resid1[i,t]<- pow(pow(y[i,t],0.5)-pow(e1[i,t],0.5),2) | |
resid1.fit[i,t]<- pow(pow(y.fit[i,t],0.5) - pow(e1[i,t],0.5),2) | |
e1[i,t+8]<- muc[i,t,2]*ncap[i,2] | |
resid1[i,t+8]<- pow(pow(y[i,t+8],0.5)-pow(e1[i,t+8],0.5),2) | |
resid1.fit[i,t+8]<- pow(pow(y.fit[i,t+8],0.5) - pow(e1[i,t+8],0.5),2) | |
} | |
e2[i,1] <- N[i,1]*lambda[i] | |
e2[i,2] <- N[i,2]*gamma[i] | |
for(k in 1:2){ | |
resid2[i,k]<- pow(pow(ncap[i,k],0.5) - pow(e2[i,k],0.5),2) | |
resid2.fit[i,k]<- pow(pow(ncap.fit[i,k],0.5) - pow(e2[i,k],0.5),2) | |
} | |
} | |
ft1.data<- sum(resid1[,]) | |
ft1.post<- sum(resid1.fit[,]) | |
ft2.data<- sum(resid2[,]) | |
ft2.post<- sum(resid2.fit[,]) | |
} | |
", fill=TRUE, file='DM3.txt') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment