Created
May 19, 2020 08:05
-
-
Save djinn/d707f72a87cde59d782395fcc0294091 to your computer and use it in GitHub Desktop.
Implementation of Miller–Rabin primality test in C++ using parallelism constructs from C++ '17
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // C++ program to print all primes smaller than or equal to | |
| // n using Miller-Rabin Primality Test | |
| // Reference: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test | |
| // It is not particularly to optimized | |
| // since focus is readability | |
| // Compile: g++ -std=c++17 -o prime prime.c++ -ltbb | |
| #include <execution> | |
| #include <iostream> | |
| #include <math.h> | |
| using namespace std; | |
| int power(unsigned long int x, unsigned long y, unsigned long p){ | |
| int res = 1; | |
| x = x % p; | |
| while (y > 0) { | |
| if (y & 1) | |
| res = (res * x) % p; | |
| y = y >> 1; | |
| x = (x * x) % p; | |
| } | |
| return res; | |
| } | |
| bool millerTest(unsigned long d, unsigned long n) { | |
| unsigned long a = 2 + rand () % (n - 4); | |
| unsigned long x = power(a, d, n); | |
| if (x == 1 || x == n - 1) | |
| return true; | |
| while (d != n - 1){ | |
| x = (x * x) % n; | |
| d *= 2; | |
| if (x == 1) return false; | |
| if (x == n - 1) return true; | |
| } | |
| return false; | |
| } | |
| bool isPrime(unsigned long n, int k) { | |
| if (n <= 1 || n == 4) return false; | |
| if (n <= 3) return true; | |
| unsigned long int d = n - 1; | |
| while (d % 2 == 0) | |
| d /= 2; | |
| for(int i = 0; i < k; i++){ | |
| if (!millerTest(d, n)) | |
| return false; | |
| } | |
| return true; | |
| } | |
| // Driver Program to test above function | |
| int main() | |
| { | |
| int n = 10000000; | |
| int k = 200; | |
| vector<unsigned long> primeN(n); | |
| iota(primeN.begin(), primeN.end(), 1); | |
| vector<bool> isPrimeV(n); | |
| transform(execution::par, | |
| primeN.begin(), primeN.end(), | |
| isPrimeV.begin(), | |
| [k](unsigned long x) -> bool { | |
| return isPrime(x, k); | |
| }); | |
| int count = accumulate(isPrimeV.begin(), isPrimeV.end(), 0, [](int d, bool v){ | |
| if (v == true) return d += 1; else return d; | |
| }); | |
| cout << count << endl; | |
| return 0; | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment