Created
          August 7, 2025 16:08 
        
      - 
      
- 
        Save djkazic/9d52c21bcfc56e6c5f9c59dc66d96838 to your computer and use it in GitHub Desktop. 
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | package main | |
| import ( | |
| "crypto/sha256" | |
| "encoding/binary" | |
| "encoding/hex" | |
| "fmt" | |
| "math/big" | |
| "sort" | |
| ) | |
| // ============================================================================= | |
| // GLOBAL PARAMETERS | |
| // ============================================================================= | |
| const ( | |
| // Using a small prime for educational purposes. | |
| // This prime is chosen to allow for efficient FFTs in a full STARK, | |
| // though FFTs are not explicitly used in this simplified polynomial arithmetic. | |
| fieldPrime int64 = 3*1<<30 + 1 // A prime of the form k * 2^n + 1 | |
| // Number of steps in our computation trace. | |
| traceLength = 8 | |
| // Blowup factor for extending the evaluation domain. | |
| // This determines the size of the FRI domain relative to the trace domain. | |
| blowupFactor = 8 | |
| // Number of queries for the FRI protocol to achieve soundness. | |
| // More queries lead to stronger soundness guarantees. | |
| numQueries = 3 | |
| ) | |
| // ============================================================================= | |
| // FINITE FIELD ARITHMETIC (GF_p) | |
| // ============================================================================= | |
| // FieldElement represents an element in a prime finite field. | |
| type FieldElement struct { | |
| value *big.Int | |
| prime *big.Int | |
| } | |
| // normalizeBigInt ensures a big.Int value is within [0, prime-1] after modulo. | |
| func normalizeBigInt(val *big.Int, prime *big.Int) *big.Int { | |
| res := new(big.Int).Mod(val, prime) | |
| if res.Sign() < 0 { | |
| res.Add(res, prime) | |
| } | |
| return res | |
| } | |
| // NewFieldElement creates a new field element. | |
| func NewFieldElement(value int64, prime int64) *FieldElement { | |
| val := big.NewInt(value) | |
| p := big.NewInt(prime) | |
| return &FieldElement{ | |
| value: normalizeBigInt(val, p), // Ensure normalization at creation | |
| prime: p, | |
| } | |
| } | |
| // Zero returns the additive identity. | |
| func Zero(prime int64) *FieldElement { return NewFieldElement(0, prime) } | |
| // One returns the multiplicative identity. | |
| func One(prime int64) *FieldElement { return NewFieldElement(1, prime) } | |
| // Add performs addition in the finite field. | |
| func (fe *FieldElement) Add(other *FieldElement) *FieldElement { | |
| res := new(big.Int).Add(fe.value, other.value) | |
| return &FieldElement{value: normalizeBigInt(res, fe.prime), prime: fe.prime} | |
| } | |
| // Sub performs subtraction in the finite field. | |
| func (fe *FieldElement) Sub(other *FieldElement) *FieldElement { | |
| res := new(big.Int).Sub(fe.value, other.value) | |
| return &FieldElement{value: normalizeBigInt(res, fe.prime), prime: fe.prime} | |
| } | |
| // Mul performs multiplication in the finite field. | |
| func (fe *FieldElement) Mul(other *FieldElement) *FieldElement { | |
| res := new(big.Int).Mul(fe.value, other.value) | |
| return &FieldElement{value: normalizeBigInt(res, fe.prime), prime: fe.prime} | |
| } | |
| // Div performs division in the finite field (multiplication by modular inverse). | |
| func (fe *FieldElement) Div(other *FieldElement) *FieldElement { | |
| inv := new(big.Int).ModInverse(other.value, fe.prime) | |
| if inv == nil { | |
| panic(fmt.Sprintf("division by zero or no inverse for %s in field %s", other.value, fe.prime)) | |
| } | |
| res := new(big.Int).Mul(fe.value, inv) | |
| return &FieldElement{value: normalizeBigInt(res, fe.prime), prime: fe.prime} | |
| } | |
| // Exp performs exponentiation in the finite field. | |
| func (fe *FieldElement) Exp(power *big.Int) *FieldElement { | |
| res := new(big.Int).Exp(fe.value, power, fe.prime) | |
| return &FieldElement{value: normalizeBigInt(res, fe.prime), prime: fe.prime} | |
| } | |
| // Neg performs negation in the finite field. | |
| func (fe *FieldElement) Neg() *FieldElement { | |
| res := new(big.Int).Neg(fe.value) | |
| return &FieldElement{value: normalizeBigInt(res, fe.prime), prime: fe.prime} | |
| } | |
| // Equal checks if two field elements are equal. | |
| func (fe *FieldElement) Equal(other *FieldElement) bool { | |
| return fe.value.Cmp(other.value) == 0 && fe.prime.Cmp(other.prime) == 0 | |
| } | |
| // IsZero checks if the field element is zero. | |
| func (fe *FieldElement) IsZero() bool { | |
| return fe.value.Cmp(big.NewInt(0)) == 0 | |
| } | |
| // String returns the string representation of the field element. | |
| func (fe *FieldElement) String() string { | |
| return fe.value.String() | |
| } | |
| // Bytes returns the raw byte representation of the field element (variable length). | |
| // Use Bytes32() for fixed-length representation for hashing. | |
| func (fe *FieldElement) Bytes() []byte { | |
| return fe.value.Bytes() | |
| } | |
| // Bytes32 returns the 32-byte representation of the field element. | |
| // It pads with leading zeros if necessary. | |
| func (fe *FieldElement) Bytes32() []byte { | |
| b := fe.value.Bytes() | |
| if len(b) > 32 { | |
| // This should ideally not happen if fieldPrime fits within 32 bytes | |
| // and normalization is correct. Handle as an error or truncate. | |
| panic(fmt.Sprintf("Field element byte representation too large: %d bytes, expected <= 32", len(b))) | |
| } | |
| pad := make([]byte, 32-len(b)) // Create padding of zeros | |
| return append(pad, b...) // Prepend padding | |
| } | |
| // ============================================================================= | |
| // POLYNOMIAL ARITHMETIC | |
| // ============================================================================= | |
| // Polynomial represents a polynomial with coefficients in a finite field. | |
| type Polynomial []*FieldElement | |
| // NewPolynomial creates a new polynomial from coefficients. | |
| func NewPolynomial(coeffs []*FieldElement) Polynomial { | |
| // Trim leading zero coefficients | |
| for len(coeffs) > 1 && coeffs[len(coeffs)-1].IsZero() { | |
| coeffs = coeffs[:len(coeffs)-1] | |
| } | |
| // After trimming, if there's one coefficient left and it's zero, | |
| // it represents the zero polynomial (degree -1). | |
| if len(coeffs) == 1 && coeffs[0].IsZero() { | |
| return Polynomial{} // Return empty slice for zero polynomial | |
| } | |
| return Polynomial(coeffs) | |
| } | |
| // Degree returns the degree of the polynomial. | |
| func (p Polynomial) Degree() int { | |
| if len(p) == 0 { | |
| return -1 // Degree of zero polynomial is -1 | |
| } | |
| // Degree is length - 1, after trimming leading zeros | |
| return len(p) - 1 | |
| } | |
| // Evaluate evaluates the polynomial at a given point x. | |
| func (p Polynomial) Evaluate(x *FieldElement) *FieldElement { | |
| if len(p) == 0 { | |
| return Zero(x.prime.Int64()) | |
| } | |
| res := Zero(x.prime.Int64()) | |
| for i := len(p) - 1; i >= 0; i-- { | |
| res = res.Mul(x).Add(p[i]) | |
| } | |
| return res | |
| } | |
| // Add adds two polynomials. | |
| func (p Polynomial) Add(q Polynomial) Polynomial { | |
| maxLen := len(p) | |
| if len(q) > maxLen { | |
| maxLen = len(q) | |
| } | |
| resCoeffs := make([]*FieldElement, maxLen) | |
| for i := 0; i < maxLen; i++ { | |
| var pCoeff, qCoeff *FieldElement | |
| if i < len(p) { | |
| pCoeff = p[i] | |
| } else { | |
| pCoeff = Zero(fieldPrime) | |
| } | |
| if i < len(q) { | |
| qCoeff = q[i] | |
| } else { | |
| qCoeff = Zero(fieldPrime) | |
| } | |
| resCoeffs[i] = pCoeff.Add(qCoeff) | |
| } | |
| return NewPolynomial(resCoeffs) | |
| } | |
| // Sub subtracts one polynomial from another. | |
| func (p Polynomial) Sub(q Polynomial) Polynomial { | |
| return p.Add(q.Neg()) | |
| } | |
| // Mul multiplies two polynomials. | |
| func (p Polynomial) Mul(q Polynomial) Polynomial { | |
| if len(p) == 0 || len(q) == 0 { | |
| return NewPolynomial([]*FieldElement{}) | |
| } | |
| resCoeffs := make([]*FieldElement, len(p)+len(q)-1) | |
| for i := range resCoeffs { | |
| resCoeffs[i] = Zero(fieldPrime) | |
| } | |
| for i := 0; i < len(p); i++ { | |
| for j := 0; j < len(q); j++ { | |
| term := p[i].Mul(q[j]) | |
| resCoeffs[i+j] = resCoeffs[i+j].Add(term) | |
| } | |
| } | |
| return NewPolynomial(resCoeffs) | |
| } | |
| // Div divides two polynomials, returns quotient and remainder. | |
| // This is standard polynomial long division. | |
| func (p Polynomial) Div(q Polynomial) (Polynomial, Polynomial) { | |
| if q.Degree() < 0 || (q.Degree() == 0 && q[0].IsZero()) { | |
| panic("division by zero polynomial") | |
| } | |
| if p.Degree() < q.Degree() { | |
| return NewPolynomial([]*FieldElement{Zero(fieldPrime)}), p | |
| } | |
| rem := make(Polynomial, len(p)) | |
| copy(rem, p) | |
| quotCoeffs := make([]*FieldElement, p.Degree()-q.Degree()+1) | |
| for i := range quotCoeffs { | |
| quotCoeffs[i] = Zero(fieldPrime) | |
| } | |
| for rem.Degree() >= q.Degree() { | |
| leadCoeffRem := rem[rem.Degree()] | |
| leadCoeffQ := q[q.Degree()] | |
| termCoeff := leadCoeffRem.Div(leadCoeffQ) | |
| degDiff := rem.Degree() - q.Degree() | |
| quotCoeffs[degDiff] = termCoeff | |
| // Create a temporary polynomial for q * (termCoeff * x^degDiff) | |
| tempPolyCoeffs := make([]*FieldElement, degDiff+1) | |
| // FIX: Initialize all coefficients to Zero(fieldPrime) to prevent nil pointers | |
| for k := range tempPolyCoeffs { | |
| tempPolyCoeffs[k] = Zero(fieldPrime) | |
| } | |
| tempPolyCoeffs[degDiff] = termCoeff | |
| tempPoly := NewPolynomial(tempPolyCoeffs) | |
| subtracted := q.Mul(tempPoly) | |
| // Subtract from remainder | |
| rem = rem.Add(subtracted.Neg()) | |
| // Trim leading zeros from remainder | |
| for { // Loop indefinitely until break condition met | |
| currentDegree := rem.Degree() | |
| if currentDegree == -1 { // Remainder is zero polynomial | |
| break | |
| } | |
| if rem[currentDegree].IsZero() { | |
| rem = rem[:currentDegree] // Trim the leading zero | |
| } else { | |
| break // Non-zero leading coefficient, stop trimming | |
| } | |
| } | |
| } | |
| return NewPolynomial(quotCoeffs), NewPolynomial(rem) | |
| } | |
| // Interpolate interpolates a polynomial that passes through the given points (x, y). | |
| // Uses Lagrange interpolation. | |
| func Interpolate(domain, values []*FieldElement) Polynomial { | |
| if len(domain) != len(values) { | |
| panic("domain and values length mismatch") | |
| } | |
| n := len(domain) | |
| p := NewPolynomial([]*FieldElement{Zero(fieldPrime)}) // Initialize as zero polynomial | |
| for i := 0; i < n; i++ { | |
| // Numerator polynomial: product of (x - domain[j]) for j != i | |
| numCoeffs := []*FieldElement{One(fieldPrime)} // Start with 1 | |
| numPoly := NewPolynomial(numCoeffs) | |
| for j := 0; j < n; j++ { | |
| if i == j { | |
| continue | |
| } | |
| // (x - domain[j]) is represented as NewPolynomial({-domain[j], 1}) | |
| numPoly = numPoly.Mul(NewPolynomial([]*FieldElement{domain[j].Neg(), One(fieldPrime)})) | |
| } | |
| // Denominator value: product of (domain[i] - domain[j]) for j != i | |
| denVal := One(fieldPrime) | |
| for j := 0; j < n; j++ { | |
| if i == j { | |
| continue | |
| } | |
| denVal = denVal.Mul(domain[i].Sub(domain[j])) | |
| } | |
| // Calculate the Lagrange basis polynomial term: values[i] * numPoly / denVal | |
| termScale := values[i].Div(denVal) | |
| p = p.Add(numPoly.Scale(termScale)) | |
| } | |
| return p | |
| } | |
| // Scale multiplies each coefficient by a scalar. | |
| func (p Polynomial) Scale(s *FieldElement) Polynomial { | |
| resCoeffs := make(Polynomial, len(p)) | |
| for i, c := range p { | |
| resCoeffs[i] = c.Mul(s) | |
| } | |
| return NewPolynomial(resCoeffs) | |
| } | |
| // Neg negates all coefficients. | |
| func (p Polynomial) Neg() Polynomial { | |
| resCoeffs := make([]*FieldElement, len(p)) | |
| for i, c := range p { | |
| resCoeffs[i] = c.Neg() | |
| } | |
| return NewPolynomial(resCoeffs) | |
| } | |
| // ScaleByPower scales each coefficient c_i by scalar^i. | |
| func (p Polynomial) ScaleByPower(scalar *FieldElement) Polynomial { | |
| resCoeffs := make(Polynomial, len(p)) | |
| for i, c := range p { | |
| power := big.NewInt(int64(i)) // Note: int64(i) is fine for current traceLength, but be mindful of overflow for very large degrees. | |
| resCoeffs[i] = c.Mul(scalar.Exp(power)) | |
| } | |
| return NewPolynomial(resCoeffs) | |
| } | |
| // ============================================================================= | |
| // MERKLE TREE | |
| // ============================================================================= | |
| // MerkleNode represents a node in the Merkle tree. | |
| type MerkleNode struct { | |
| Left *MerkleNode | |
| Right *MerkleNode | |
| Hash []byte | |
| } | |
| // NewMerkleNode creates a new Merkle node. | |
| func NewMerkleNode(left, right *MerkleNode, data []byte) *MerkleNode { | |
| node := &MerkleNode{Left: left, Right: right} | |
| if left == nil && right == nil { | |
| // Leaf node: hash the data directly | |
| hash := sha256.Sum256(data) | |
| node.Hash = hash[:] | |
| } else { | |
| // Internal node: hash the concatenation of child hashes | |
| var combined []byte | |
| if right == nil { // Handle odd number of leaves by duplicating the last node | |
| combined = append(left.Hash, left.Hash...) // Hash of (L, L) | |
| } else { | |
| combined = append(left.Hash, right.Hash...) | |
| } | |
| hash := sha256.Sum256(combined) | |
| node.Hash = hash[:] | |
| } | |
| return node | |
| } | |
| // NewMerkleTree builds a Merkle tree from a list of byte slices (leaves). | |
| // Returns the root node and all levels of the tree for path generation. | |
| func NewMerkleTree(data [][]byte) (*MerkleNode, [][]*MerkleNode) { | |
| var nodes []*MerkleNode | |
| for _, d := range data { | |
| nodes = append(nodes, NewMerkleNode(nil, nil, d)) | |
| } | |
| levels := [][]*MerkleNode{nodes} | |
| for len(nodes) > 1 { | |
| var newLevel []*MerkleNode | |
| for i := 0; i < len(nodes); i += 2 { | |
| if i+1 < len(nodes) { | |
| newLevel = append(newLevel, NewMerkleNode(nodes[i], nodes[i+1], nil)) | |
| } else { | |
| // Duplicate the last node if there's an odd number of nodes at this level | |
| newLevel = append(newLevel, NewMerkleNode(nodes[i], nodes[i], nil)) | |
| } | |
| } | |
| nodes = newLevel | |
| levels = append(levels, nodes) | |
| } | |
| return nodes[0], levels | |
| } | |
| // GetAuthenticationPath returns the Merkle path for a leaf at a given index. | |
| // The path consists of sibling hashes from the leaf up to the root. | |
| func GetAuthenticationPath(index int, levels [][]*MerkleNode) [][]byte { | |
| var path [][]byte | |
| // Iterate through levels from leaves up to the root's children | |
| for i := 0; i < len(levels)-1; i++ { | |
| // Sibling index: if current index is even, sibling is index+1; if odd, sibling is index-1. | |
| // XORing with 1 effectively flips the last bit, finding the sibling. | |
| siblingIndex := index ^ 1 | |
| if siblingIndex < len(levels[i]) { // Ensure sibling exists in the current level | |
| path = append(path, levels[i][siblingIndex].Hash) | |
| } else { | |
| // This case should ideally not happen if tree construction handles odd levels correctly | |
| // (by duplicating the last node, ensuring a sibling always exists). | |
| // For robustness, we can duplicate the current node's hash if no sibling. | |
| path = append(path, levels[i][index].Hash) // Use self as sibling if no other | |
| } | |
| index /= 2 // Move to the parent's index in the next level | |
| } | |
| return path | |
| } | |
| // VerifyMerklePath verifies a Merkle path for a given leaf and root. | |
| // It reconstructs the root hash from the leaf data and the path, then compares. | |
| func VerifyMerklePath(root, leafData []byte, path [][]byte, index int) bool { | |
| currentHash := sha256.Sum256(leafData) // Hash the leaf data first | |
| for _, siblingHash := range path { | |
| var combined []byte | |
| if index%2 == 0 { // If current node was a left child | |
| combined = append(currentHash[:], siblingHash...) | |
| } else { // If current node was a right child | |
| combined = append(siblingHash, currentHash[:]...) | |
| } | |
| newHash := sha256.Sum256(combined) | |
| currentHash = newHash | |
| index /= 2 // Move up to the parent level | |
| } | |
| return hex.EncodeToString(root) == hex.EncodeToString(currentHash[:]) | |
| } | |
| // ============================================================================= | |
| // FIAT-SHAMIR TRANSCRIPT | |
| // ============================================================================= | |
| // Transcript handles the Fiat-Shamir transform to make the protocol non-interactive. | |
| // It deterministically generates challenges based on the proof elements. | |
| type Transcript struct { | |
| state []byte // The current state of the transcript, updated with hashes | |
| } | |
| func NewTranscript() *Transcript { | |
| return &Transcript{state: []byte{}} | |
| } | |
| // Add adds data to the transcript state using hash-chaining. | |
| func (t *Transcript) Add(data []byte) { | |
| h := sha256.New() | |
| h.Write(t.state) | |
| h.Write(data) | |
| t.state = h.Sum(nil) | |
| } | |
| // GetChallenge generates a pseudo-random field element challenge from the current state. | |
| func (t *Transcript) GetChallenge() *FieldElement { | |
| hash := sha256.Sum256(t.state) | |
| // Update state for next challenge to ensure uniqueness | |
| t.state = hash[:] | |
| // Use the hash bytes to generate a large integer, then reduce it modulo fieldPrime | |
| val := new(big.Int).SetBytes(hash[:]) | |
| return &FieldElement{value: val.Mod(val, big.NewInt(fieldPrime)), prime: big.NewInt(fieldPrime)} | |
| } | |
| // GetQueryIndices generates pseudo-random indices for FRI queries. | |
| // It ensures the indices are unique and within the specified maximum index. | |
| func (t *Transcript) GetQueryIndices(maxIndex int, count int) []int { | |
| var indices []int | |
| seen := make(map[int]bool) // To track unique indices | |
| for len(indices) < count { | |
| hash := sha256.Sum256(t.state) | |
| t.state = hash[:] // Update state for next challenge | |
| // Use the first 8 bytes of the hash to generate a uint64 | |
| val := binary.BigEndian.Uint64(hash[:8]) | |
| index := int(val % uint64(maxIndex)) | |
| if !seen[index] { | |
| indices = append(indices, index) | |
| seen[index] = true | |
| } | |
| } | |
| sort.Ints(indices) // Sort for deterministic behavior (optional but good practice) | |
| return indices | |
| } | |
| // ============================================================================= | |
| // STARK PROOF STRUCTURES | |
| // ============================================================================= | |
| // FriProof contains the proof for a single FRI layer. | |
| type FriProof struct { | |
| Root []byte // Merkle root of the evaluations for this layer | |
| Paths [][][]byte // Merkle paths for the queried indices | |
| Values [][]*FieldElement // Values at the queried indices for this layer | |
| // For the final layer, this contains the coefficients of the final polynomial | |
| FinalCoeffs []*FieldElement | |
| } | |
| // StarkProof contains the entire proof. | |
| type StarkProof struct { | |
| TraceRoot []byte | |
| CompositionRoot []byte | |
| FriProofs []FriProof | |
| // Evaluations of trace and composition polynomials at the DEEP point z | |
| TraceEvalAtZ *FieldElement | |
| TraceEvalAtGZ *FieldElement | |
| TraceEvalAtG2Z *FieldElement // NEW: Added P(g^2*z) evaluation | |
| CompositionEvalAtZ *FieldElement | |
| // Query data for the initial trace and composition polynomials | |
| TraceQueryData [][]byte // Leaf data for trace polynomial evaluations at query indices | |
| TraceQueryPaths [][][]byte | |
| CompositionQueryData [][]byte // Leaf data for composition polynomial evaluations at query indices | |
| CompositionQueryPaths [][][]byte | |
| } | |
| // ============================================================================= | |
| // PROVER | |
| // ============================================================================= | |
| type Prover struct { | |
| prime int64 | |
| g *FieldElement // Generator of the entire multiplicative group Z_p^* | |
| traceDomainGen *FieldElement // Generator of the trace evaluation domain | |
| evalDomainGen *FieldElement // Generator of the larger evaluation domain (for FRI) | |
| traceDomain []*FieldElement | |
| evalDomain []*FieldElement | |
| trace []*FieldElement | |
| transcript *Transcript | |
| } | |
| func NewProver() *Prover { | |
| p := &Prover{ | |
| prime: fieldPrime, | |
| transcript: NewTranscript(), | |
| } | |
| // Find a generator for the multiplicative group Z_p^*. | |
| // This `g` is used to construct the evaluation domains. | |
| p.g = findGenerator(p.prime) | |
| // Create domains | |
| // Trace domain: powers of traceDomainGen for traceLength points. | |
| // traceDomainGen is g^((p-1)/traceLength). | |
| traceDomainSize := int64(traceLength) | |
| powerTrace := new(big.Int).Div(big.NewInt(p.prime-1), big.NewInt(traceDomainSize)) | |
| p.traceDomainGen = p.g.Exp(powerTrace) | |
| p.traceDomain = make([]*FieldElement, traceDomainSize) | |
| for i := int64(0); i < traceDomainSize; i++ { | |
| p.traceDomain[i] = p.traceDomainGen.Exp(big.NewInt(i)) | |
| } | |
| // Evaluation domain (for FRI): powers of evalDomainGen for traceLength * blowupFactor points. | |
| // evalDomainGen is g^((p-1)/(traceLength * blowupFactor)). | |
| evalDomainSize := int64(traceLength * blowupFactor) | |
| powerEval := new(big.Int).Div(big.NewInt(p.prime-1), big.NewInt(evalDomainSize)) | |
| p.evalDomainGen = p.g.Exp(powerEval) | |
| p.evalDomain = make([]*FieldElement, evalDomainSize) | |
| for i := int64(0); i < evalDomainSize; i++ { | |
| p.evalDomain[i] = p.evalDomainGen.Exp(big.NewInt(i)) | |
| } | |
| return p | |
| } | |
| // GenerateTrace creates the execution trace for our computation. | |
| // For this example, it's a Fibonacci-like sequence: a_n = a_{n-1}^2 + a_{n-2}^2 | |
| func (p *Prover) GenerateTrace() { | |
| p.trace = make([]*FieldElement, traceLength) | |
| p.trace[0] = NewFieldElement(2, p.prime) | |
| p.trace[1] = NewFieldElement(3, p.prime) | |
| for i := 2; i < traceLength; i++ { | |
| t1 := p.trace[i-1].Mul(p.trace[i-1]) | |
| t2 := p.trace[i-2].Mul(p.trace[i-2]) | |
| p.trace[i] = t1.Add(t2) | |
| } | |
| } | |
| func (p *Prover) Prove() *StarkProof { | |
| // 1. Generate and commit to the execution trace | |
| p.GenerateTrace() | |
| fmt.Printf("Trace: %v\n", p.trace) // DEBUG PRINT | |
| // Interpolate the trace points to get the trace polynomial P(x) | |
| tracePoly := Interpolate(p.traceDomain, p.trace) | |
| // Evaluate P(x) on the larger evaluation domain for FRI | |
| traceEvals := make([]*FieldElement, len(p.evalDomain)) | |
| traceEvalsBytes := make([][]byte, len(p.evalDomain)) | |
| for i, x := range p.evalDomain { | |
| traceEvals[i] = tracePoly.Evaluate(x) | |
| traceEvalsBytes[i] = traceEvals[i].Bytes32() // Use Bytes32 for fixed-length hashing | |
| } | |
| // Commit to the trace evaluations with a Merkle tree | |
| traceMerkleRoot, traceMerkleLevels := NewMerkleTree(traceEvalsBytes) | |
| p.transcript.Add(traceMerkleRoot.Hash) // Add root to transcript for Fiat-Shamir | |
| // 2. Define AIR constraints and create the low-degree composition polynomial C(x) | |
| // Constraint: P(g^2*x) - P(g*x)^2 - P(x)^2 = 0 | |
| // This constraint holds for points in the trace domain, specifically traceDomain[0] to traceDomain[traceLength-3]. | |
| // Let constraint_poly_numerator(x) = P(g^2*x) - P(g*x)^2 - P(x)^2. | |
| // The composition polynomial C(x) = constraint_poly_numerator(x) / Z(x), where Z(x) is the vanishing polynomial for the points | |
| // where the constraint holds. | |
| // Step 2a: Construct the constraint polynomial (numerator) in coefficient form. | |
| // P(x) is tracePoly | |
| p_x_poly := tracePoly | |
| gTraceSquared := p.traceDomainGen.Mul(p.traceDomainGen) | |
| // P(g*x) in coefficient form | |
| p_gx_poly := tracePoly.ScaleByPower(p.traceDomainGen) | |
| // P(g^2*x) in coefficient form | |
| p_g2x_poly := tracePoly.ScaleByPower(gTraceSquared) | |
| // Calculate P(g*x)^2 and P(x)^2 | |
| p_gx_squared_poly := p_gx_poly.Mul(p_gx_poly) | |
| p_x_squared_poly := p_x_poly.Mul(p_x_poly) | |
| // Construct the actual constraint polynomial (numerator) | |
| // constraint_poly_numerator(x) = P(g^2*x) - P(g*x)^2 - P(x)^2 | |
| actualConstraintPolyNumerator := p_g2x_poly.Sub(p_gx_squared_poly).Sub(p_x_squared_poly) | |
| // DEBUG: Evaluate this polynomial on the constraint domain to ensure it's zero there | |
| constraintDomainForInterpolation := p.traceDomain[:traceLength-2] // Points x_0, ..., x_{n-3} | |
| debugConstraintEvals := make([]*FieldElement, traceLength-2) | |
| for i, x := range constraintDomainForInterpolation { | |
| debugConstraintEvals[i] = actualConstraintPolyNumerator.Evaluate(x) | |
| } | |
| fmt.Printf("DEBUG: Constraint Evaluations on Constraint Domain (from numerator poly): %v\n", debugConstraintEvals) // DEBUG PRINT | |
| // Step 2c: Define the vanishing polynomial Z(x) in coefficient form. | |
| // Z(x) = product_{i=0}^{traceLength-3} (x - traceDomain[i]) | |
| vanishingPoly := NewPolynomial([]*FieldElement{One(p.prime)}) // Start with 1 | |
| for i := 0; i < traceLength-2; i++ { // Iterate over traceDomain[0] to traceDomain[traceLength-3] | |
| term := NewPolynomial([]*FieldElement{p.traceDomain[i].Neg(), One(p.prime)}) // (x - traceDomain[i]) | |
| vanishingPoly = vanishingPoly.Mul(term) | |
| } | |
| // Step 2d: Perform polynomial division to get the low-degree composition polynomial C(x). | |
| // C(x) = actualConstraintPolyNumerator(x) / vanishingPoly(x) | |
| actualCompositionPoly, rem := actualConstraintPolyNumerator.Div(vanishingPoly) | |
| if rem.Degree() != -1 { // Remainder must be zero | |
| panic(fmt.Sprintf("Actual composition polynomial division remainder not zero. Remainder degree: %d", rem.Degree())) | |
| } | |
| fmt.Printf("Actual Composition Poly Degree: %d\n", actualCompositionPoly.Degree()) // Debugging | |
| // Step 2e: Evaluate this actual low-degree composition polynomial on the large evaluation domain. | |
| // These are the evaluations that will be committed to. | |
| compositionEvals := make([]*FieldElement, len(p.evalDomain)) | |
| compositionEvalsBytes := make([][]byte, len(p.evalDomain)) | |
| for i, x := range p.evalDomain { | |
| compositionEvals[i] = actualCompositionPoly.Evaluate(x) // Evaluate the low-degree poly | |
| compositionEvalsBytes[i] = compositionEvals[i].Bytes32() // Use Bytes32 for fixed-length hashing | |
| } | |
| // Commit to the composition polynomial evaluations | |
| compositionMerkleRoot, compositionMerkleLevels := NewMerkleTree(compositionEvalsBytes) | |
| p.transcript.Add(compositionMerkleRoot.Hash) | |
| // 3. DEEP step: Evaluate polynomials at a random point z | |
| z := p.transcript.GetChallenge() // Random challenge point from the verifier | |
| // Evaluate P(x) at z and g*z and g^2*z | |
| traceEvalAtZ := tracePoly.Evaluate(z) | |
| traceEvalAtGZ := tracePoly.Evaluate(z.Mul(p.traceDomainGen)) | |
| traceEvalAtG2Z := tracePoly.Evaluate(z.Mul(gTraceSquared)) | |
| // Evaluate the *actual low-degree* composition polynomial at z | |
| compositionEvalAtZ := actualCompositionPoly.Evaluate(z) // Use the correct low-degree poly | |
| // Add these evaluations to the transcript | |
| p.transcript.Add(traceEvalAtZ.Bytes32()) // Use Bytes32 | |
| p.transcript.Add(traceEvalAtGZ.Bytes32()) // Use Bytes32 | |
| p.transcript.Add(traceEvalAtG2Z.Bytes32()) // Use Bytes32 | |
| p.transcript.Add(compositionEvalAtZ.Bytes32()) // Use Bytes32 | |
| // Construct DEEP polynomials: | |
| // P_z(x) = (P(x) - P(z)) / (x - z) | |
| // P_gz(x) = (P(x) - P(g*z)) / (x - g*z) | |
| // C_z(x) = (C(x) - C(z)) / (x - z) | |
| // Denominators for DEEP polynomials | |
| xMinusZ := NewPolynomial([]*FieldElement{z.Neg(), One(p.prime)}) | |
| xMinusGZ := NewPolynomial([]*FieldElement{z.Mul(p.traceDomainGen).Neg(), One(p.prime)}) | |
| // Numerators for DEEP polynomials | |
| pMinusPZ := tracePoly.Add(NewPolynomial([]*FieldElement{traceEvalAtZ.Neg()})) | |
| pMinusPGZ := tracePoly.Add(NewPolynomial([]*FieldElement{traceEvalAtGZ.Neg()})) | |
| cMinusCZ := actualCompositionPoly.Add(NewPolynomial([]*FieldElement{compositionEvalAtZ.Neg()})) // Use actualCompositionPoly | |
| // Perform polynomial division to get DEEP polynomials | |
| p_z, rem1 := pMinusPZ.Div(xMinusZ) | |
| if rem1.Degree() != -1 { // Check if remainder is zero polynomial (degree -1) | |
| panic("P_z division remainder not zero") | |
| } | |
| p_gz, rem2 := pMinusPGZ.Div(xMinusGZ) | |
| if rem2.Degree() != -1 { | |
| panic("P_gz division remainder not zero") | |
| } | |
| c_z, rem3 := cMinusCZ.Div(xMinusZ) | |
| if rem3.Degree() != -1 { | |
| panic("C_z division remainder not zero") | |
| } | |
| // Get random challenges for linear combination of DEEP polynomials | |
| alpha1 := p.transcript.GetChallenge() | |
| alpha2 := p.transcript.GetChallenge() | |
| alpha3 := p.transcript.GetChallenge() | |
| // Form the combined DEEP polynomial: D(x) = alpha1*P_z(x) + alpha2*P_gz(x) + alpha3*C_z(x) | |
| dPoly := p_z.Scale(alpha1).Add(p_gz.Scale(alpha2)).Add(c_z.Scale(alpha3)) | |
| // 4. FRI Protocol | |
| // The first polynomial for FRI is the combined DEEP polynomial D(x). | |
| currentFriPoly := dPoly | |
| currentFriDomain := p.evalDomain // Start with the full evaluation domain | |
| var friProofs []FriProof | |
| var allFriEvals [][]*FieldElement // Store all evaluations for query phase | |
| for currentFriPoly.Degree() > 0 { | |
| // Evaluate the current FRI polynomial on its domain | |
| currentFriEvals := make([]*FieldElement, len(currentFriDomain)) | |
| for i, x := range currentFriDomain { | |
| currentFriEvals[i] = currentFriPoly.Evaluate(x) | |
| } | |
| allFriEvals = append(allFriEvals, currentFriEvals) // Store for later queries | |
| // Commit to the current FRI layer's evaluations | |
| friEvalsBytes := make([][]byte, len(currentFriEvals)) | |
| for i, e := range currentFriEvals { | |
| friEvalsBytes[i] = e.Bytes32() // Use Bytes32 for fixed-length hashing | |
| } | |
| friRoot, _ := NewMerkleTree(friEvalsBytes) // Discard friLevels here, as they are regenerated later | |
| friProofs = append(friProofs, FriProof{Root: friRoot.Hash}) | |
| p.transcript.Add(friRoot.Hash) // Add root to transcript | |
| // Get folding challenge for the next layer | |
| alpha := p.transcript.GetChallenge() | |
| // Fold the polynomial: P_next(x^2) = (P(x) + P(-x))/2 + alpha * (P(x) - P(-x))/(2x) | |
| // This is equivalent to: P_next(y) = P_even(y) + alpha * P_odd(y) where y = x^2 | |
| // P_even(x) = sum(c_2i * x^(2i)) and P_odd(x) = sum(c_2i+1 * x^(2i+1)) | |
| // P(x) = P_even(x) + P_odd(x) | |
| // P_even(x) = (P(x) + P(-x)) / 2 | |
| // P_odd(x) = (P(x) - P(-x)) / 2 | |
| // P_next(y) = (P(sqrt(y)) + P(-sqrt(y)))/2 + alpha * (P(sqrt(y)) - P(-sqrt(y)))/(2*sqrt(y)) | |
| // The polynomial `currentFriPoly` has coefficients c_0, c_1, c_2, ... | |
| // P_even(x) has coefficients c_0, c_2, c_4, ... | |
| // P_odd(x) has coefficients c_1, c_3, c_5, ... | |
| // P_next(y) = (c_0 + c_2*y + c_4*y^2 + ...) + alpha * (c_1 + c_3*y + c_5*y^2 + ...) | |
| nextPolyCoeffs := make([]*FieldElement, (currentFriPoly.Degree()/2)+1) | |
| for i := 0; i < len(nextPolyCoeffs); i++ { | |
| evenCoeff := currentFriPoly[2*i] | |
| oddCoeff := Zero(p.prime) | |
| if 2*i+1 < len(currentFriPoly) { // Check if odd coefficient exists | |
| oddCoeff = currentFriPoly[2*i+1] | |
| } | |
| nextPolyCoeffs[i] = evenCoeff.Add(alpha.Mul(oddCoeff)) | |
| } | |
| currentFriPoly = NewPolynomial(nextPolyCoeffs) | |
| // Update the domain for the next layer: x -> x^2 | |
| nextDomainSize := len(currentFriDomain) / 2 | |
| nextDomain := make([]*FieldElement, nextDomainSize) | |
| for i := 0; i < nextDomainSize; i++ { | |
| nextDomain[i] = currentFriDomain[i].Mul(currentFriDomain[i]) | |
| } | |
| currentFriDomain = nextDomain | |
| } | |
| // The last layer is a constant polynomial (degree 0) | |
| finalCoeffs := []*FieldElement{currentFriPoly[0]} | |
| p.transcript.Add(finalCoeffs[0].Bytes32()) // Use Bytes32 | |
| friProofs = append(friProofs, FriProof{FinalCoeffs: finalCoeffs}) | |
| // 5. FRI Query Phase | |
| // Get random query indices from the transcript. These indices are for the *initial* FRI domain. | |
| queryIndices := p.transcript.GetQueryIndices(len(p.evalDomain), numQueries) | |
| // Collect query data for the initial trace and composition polynomials | |
| traceQueryData := make([][]byte, numQueries) | |
| traceQueryPaths := make([][][]byte, numQueries) | |
| compositionQueryData := make([][]byte, numQueries) | |
| compositionQueryPaths := make([][][]byte, numQueries) | |
| for i, index := range queryIndices { | |
| traceQueryData[i] = traceEvals[index].Bytes32() // Use Bytes32 | |
| traceQueryPaths[i] = GetAuthenticationPath(index, traceMerkleLevels) | |
| compositionQueryData[i] = compositionEvals[index].Bytes32() // Use Bytes32 | |
| compositionQueryPaths[i] = GetAuthenticationPath(index, compositionMerkleLevels) | |
| } | |
| // Collect query data for all FRI layers | |
| // This requires re-generating the Merkle trees for each layer to get the levels. | |
| // In a real implementation, these levels would be stored during the commit phase. | |
| // For simplicity and to avoid storing all levels, we regenerate them here. | |
| // This is inefficient but demonstrates the concept. | |
| for layerIdx := range friProofs { | |
| if friProofs[layerIdx].FinalCoeffs != nil { | |
| break // Skip the final layer as it has no Merkle root/paths | |
| } | |
| // Re-evaluate the polynomial for this layer and build its Merkle tree | |
| // This is highly inefficient; in practice, you'd store `friLevels` for each layer. | |
| // To get the correct evaluations for a specific layer, we need to re-run the folding | |
| // up to that layer. This is complex to do on the fly. | |
| // A simpler approach for this toy example is to use the stored `allFriEvals`. | |
| currentLayerEvals := allFriEvals[layerIdx] | |
| _, currentLayerMerkleLevels := NewMerkleTree(fieldElementsToBytes32(currentLayerEvals)) // Use Bytes32 | |
| layerPaths := make([][][]byte, numQueries) | |
| layerValues := make([][]*FieldElement, numQueries) | |
| for i, initialQueryIndex := range queryIndices { | |
| // The query index for a specific FRI layer `k` is `initialQueryIndex / (2^k)`. | |
| // We need to ensure the index is still within the domain of that layer. | |
| layerQueryIndex := initialQueryIndex >> layerIdx // Divide by 2^layerIdx | |
| if layerQueryIndex >= len(currentLayerEvals) { | |
| // This can happen if the initial query index is too large for a later, smaller domain. | |
| // In a real FRI, the query indices are generated such that they map correctly to all layers. | |
| // For this toy, we'll just skip or handle as an error. | |
| fmt.Printf("Warning: Query index %d out of bounds for FRI layer %d (domain size %d)\n", layerQueryIndex, layerIdx, len(currentLayerEvals)) | |
| // Provide dummy data or handle gracefully. For now, we'll use 0. | |
| layerPaths[i] = [][]byte{} | |
| layerValues[i] = []*FieldElement{Zero(p.prime)} | |
| continue | |
| } | |
| layerPaths[i] = GetAuthenticationPath(layerQueryIndex, currentLayerMerkleLevels) | |
| layerValues[i] = []*FieldElement{currentLayerEvals[layerQueryIndex]} | |
| } | |
| friProofs[layerIdx].Paths = layerPaths | |
| friProofs[layerIdx].Values = layerValues | |
| } | |
| return &StarkProof{ | |
| TraceRoot: traceMerkleRoot.Hash, | |
| CompositionRoot: compositionMerkleRoot.Hash, | |
| FriProofs: friProofs, | |
| TraceEvalAtZ: traceEvalAtZ, | |
| TraceEvalAtGZ: traceEvalAtGZ, | |
| TraceEvalAtG2Z: traceEvalAtG2Z, // NEW: Include in proof | |
| CompositionEvalAtZ: compositionEvalAtZ, | |
| TraceQueryData: traceQueryData, | |
| TraceQueryPaths: traceQueryPaths, | |
| CompositionQueryData: compositionQueryData, | |
| CompositionQueryPaths: compositionQueryPaths, | |
| } | |
| } | |
| // ============================================================================= | |
| // VERIFIER | |
| // ============================================================================= | |
| type Verifier struct { | |
| prime int64 | |
| g *FieldElement | |
| traceDomainGen *FieldElement | |
| evalDomainGen *FieldElement | |
| traceDomain []*FieldElement // Added for verifier | |
| evalDomain []*FieldElement // Added for verifier | |
| transcript *Transcript | |
| } | |
| func NewVerifier() *Verifier { | |
| v := &Verifier{ | |
| prime: fieldPrime, | |
| transcript: NewTranscript(), | |
| } | |
| v.g = findGenerator(v.prime) | |
| // Initialize traceDomain and evalDomain for the verifier | |
| traceDomainSize := int64(traceLength) | |
| powerTrace := new(big.Int).Div(big.NewInt(v.prime-1), big.NewInt(traceDomainSize)) | |
| v.traceDomainGen = v.g.Exp(powerTrace) | |
| v.traceDomain = make([]*FieldElement, traceDomainSize) | |
| for i := int64(0); i < traceDomainSize; i++ { | |
| v.traceDomain[i] = v.traceDomainGen.Exp(big.NewInt(i)) | |
| } | |
| evalDomainSize := int64(traceLength * blowupFactor) | |
| powerEval := new(big.Int).Div(big.NewInt(v.prime-1), big.NewInt(evalDomainSize)) | |
| v.evalDomainGen = v.g.Exp(powerEval) | |
| v.evalDomain = make([]*FieldElement, evalDomainSize) | |
| for i := int64(0); i < evalDomainSize; i++ { | |
| v.evalDomain[i] = v.evalDomainGen.Exp(big.NewInt(i)) | |
| } | |
| return v | |
| } | |
| func (v *Verifier) Verify(proof *StarkProof) bool { | |
| // Rebuild transcript state to get the same random challenges as the prover | |
| v.transcript.Add(proof.TraceRoot) | |
| v.transcript.Add(proof.CompositionRoot) | |
| z := v.transcript.GetChallenge() // Re-derive challenge z | |
| // Re-add evaluations at z to transcript to derive subsequent challenges | |
| v.transcript.Add(proof.TraceEvalAtZ.Bytes32()) // Use Bytes32 | |
| v.transcript.Add(proof.TraceEvalAtGZ.Bytes32()) // Use Bytes32 | |
| v.transcript.Add(proof.TraceEvalAtG2Z.Bytes32()) // Use Bytes32 | |
| v.transcript.Add(proof.CompositionEvalAtZ.Bytes32()) // Use Bytes32 | |
| // Re-derive DEEP challenges | |
| alpha1 := v.transcript.GetChallenge() | |
| alpha2 := v.transcript.GetChallenge() | |
| alpha3 := v.transcript.GetChallenge() | |
| // Use these challenges to avoid 'declared and not used' error, as the full DEEP check is simplified. | |
| _ = alpha1 | |
| _ = alpha2 | |
| _ = alpha3 | |
| // 1. DEEP Consistency Check | |
| // The verifier reconstructs the expected value of the combined DEEP polynomial at x=z | |
| // based on the constraint equation and the provided evaluations P(z), P(g*z), C(z). | |
| // This is a simplified check. A full DEEP check involves ensuring the DEEP polynomials | |
| // are indeed low-degree, which is handled by the FRI protocol. Here we check the | |
| // algebraic consistency at z. | |
| // Check the AIR constraint at z: P(g^2*z) - P(g*z)^2 - P(z)^2 = 0 | |
| // This should hold for the trace polynomial. | |
| gTraceSquared := v.traceDomainGen.Mul(v.traceDomainGen) | |
| // Use gTraceSquared to avoid 'declared and not used' error. | |
| _ = gTraceSquared | |
| // NEW: Use proof.TraceEvalAtG2Z for P(g^2*z) | |
| expectedConstraintEvalAtZ := proof.TraceEvalAtG2Z.Sub(proof.TraceEvalAtGZ.Mul(proof.TraceEvalAtGZ)).Sub(proof.TraceEvalAtZ.Mul(proof.TraceEvalAtZ)) | |
| // Vanishing polynomial at z | |
| // Reconstruct vanishing polynomial in coefficient form | |
| verifierVanishingPoly := NewPolynomial([]*FieldElement{One(v.prime)}) | |
| for i := 0; i < traceLength-2; i++ { | |
| term := NewPolynomial([]*FieldElement{v.traceDomain[i].Neg(), One(v.prime)}) | |
| verifierVanishingPoly = verifierVanishingPoly.Mul(term) | |
| } | |
| vanishingPolyAtZ := verifierVanishingPoly.Evaluate(z) | |
| // C(z) * Z(z) should equal the constraint evaluation at z | |
| expectedConstraintFromComposition := proof.CompositionEvalAtZ.Mul(vanishingPolyAtZ) | |
| // If vanishingPolyAtZ is zero, it means z is a root of the vanishing polynomial. | |
| // In this case, expectedConstraintEvalAtZ must also be zero. | |
| if vanishingPolyAtZ.IsZero() { | |
| if !expectedConstraintEvalAtZ.IsZero() { | |
| fmt.Println("DEEP consistency check failed: Constraint should be zero at vanishing point, but isn't.") | |
| return false | |
| } | |
| } else { | |
| if !expectedConstraintFromComposition.Equal(expectedConstraintEvalAtZ) { | |
| fmt.Println("DEEP consistency check failed: C(z) * Z(z) != Constraint(z)") | |
| fmt.Printf("Expected Constraint(z): %s, C(z)*Z(z): %s\n", expectedConstraintEvalAtZ, expectedConstraintFromComposition) | |
| return false | |
| } | |
| } | |
| fmt.Println("DEEP consistency check passed.") | |
| // 2. FRI Verification | |
| // Rebuild FRI challenges based on roots provided in the proof | |
| var friChallenges []*FieldElement | |
| for _, friProof := range proof.FriProofs { | |
| if friProof.FinalCoeffs != nil { | |
| v.transcript.Add(friProof.FinalCoeffs[0].Bytes32()) // Use Bytes32 | |
| } else { | |
| v.transcript.Add(friProof.Root) | |
| friChallenges = append(friChallenges, v.transcript.GetChallenge()) | |
| } | |
| } | |
| // Get query indices (same as prover) | |
| queryIndices := v.transcript.GetQueryIndices(traceLength*blowupFactor, numQueries) | |
| // 3. Verify query data for initial trace and composition polynomials | |
| for i, index := range queryIndices { | |
| // Verify trace polynomial evaluation | |
| ok := VerifyMerklePath(proof.TraceRoot, proof.TraceQueryData[i], proof.TraceQueryPaths[i], index) | |
| if !ok { | |
| fmt.Printf("Trace Merkle path verification failed for query %d (index %d)\n", i, index) | |
| return false | |
| } | |
| // Verify composition polynomial evaluation | |
| ok = VerifyMerklePath(proof.CompositionRoot, proof.CompositionQueryData[i], proof.CompositionQueryPaths[i], index) | |
| if !ok { | |
| fmt.Printf("Composition Merkle path verification failed for query %d (index %d)\n", i, index) | |
| return false | |
| } | |
| } | |
| // 4. Verify FRI folding consistency | |
| // This is the core of FRI. For each query, the verifier checks that the folding | |
| // from one FRI layer to the next was done correctly. | |
| // The values at the queried points for each layer are provided in the proof. | |
| currentFriDomain := make([]*FieldElement, len(v.evalDomain)) | |
| copy(currentFriDomain, v.evalDomain) // Copy initial eval domain | |
| // Iterate through each FRI layer (except the last one which is the final polynomial) | |
| for layerIdx := 0; layerIdx < len(proof.FriProofs)-1; layerIdx++ { | |
| friProofLayer := proof.FriProofs[layerIdx] | |
| //nextFriProofLayer := proof.FriProofs[layerIdx+1] // Not directly used in this simplified check | |
| alpha := friChallenges[layerIdx] // Get the challenge for this folding step | |
| _ = alpha // Use alpha to avoid 'declared and not used' error. | |
| for i, initialQueryIndex := range queryIndices { | |
| // Calculate the actual query index for the current layer's domain | |
| // This index is `initialQueryIndex / (2^k)` | |
| currentLayerQueryIndex := initialQueryIndex >> layerIdx | |
| if currentLayerQueryIndex >= len(currentFriDomain) { | |
| // This query index is out of bounds for this layer's domain. | |
| // This indicates an issue with query generation or domain size. | |
| fmt.Printf("Error: Query index %d out of bounds for FRI layer %d (domain size %d)\n", currentLayerQueryIndex, layerIdx, len(currentFriDomain)) | |
| return false | |
| } | |
| // Get the queried values and paths for the current layer | |
| currentLayerValue := friProofLayer.Values[i][0] | |
| currentLayerPath := friProofLayer.Paths[i] | |
| // Verify the Merkle path for the current layer's queried value | |
| ok := VerifyMerklePath(friProofLayer.Root, currentLayerValue.Bytes32(), currentLayerPath, currentLayerQueryIndex) // Use Bytes32 | |
| if !ok { | |
| fmt.Printf("FRI Merkle path verification failed for layer %d, query %d\n", layerIdx, i) | |
| return false | |
| } | |
| // The full folding check would involve verifying that: | |
| // P_next(x^2) = P_even(x^2) + alpha * P_odd(x^2) | |
| // This would require the prover to provide P(x) and P(-x) (or equivalent) for each query point. | |
| // Given the current `FriProof.Values` only stores one value per query, | |
| // a full algebraic folding check cannot be performed directly without modifying the proof structure. | |
| // For this example, we proceed with Merkle path verification for all layers. | |
| } | |
| // Update the domain for the next iteration | |
| nextDomainSize := len(currentFriDomain) / 2 | |
| nextDomain := make([]*FieldElement, nextDomainSize) | |
| for i := 0; i < nextDomainSize; i++ { | |
| nextDomain[i] = currentFriDomain[i].Mul(currentFriDomain[i]) | |
| } | |
| currentFriDomain = nextDomain | |
| } | |
| // 5. Final FRI Layer Check | |
| // The last FRI layer must be a constant polynomial (degree 0). | |
| // Its single coefficient is provided in proof.FriProofs[lastLayer].FinalCoeffs[0]. | |
| lastFriLayer := proof.FriProofs[len(proof.FriProofs)-1] | |
| if len(lastFriLayer.FinalCoeffs) != 1 { | |
| fmt.Println("FRI final layer check failed: Expected a constant polynomial.") | |
| return false | |
| } | |
| // finalConstant := lastFriLayer.FinalCoeffs[0] // Declared but not used, can be removed or used. | |
| // The verifier should also check that the queried values from the second to last layer | |
| // would fold into this final constant. This is the last folding check. | |
| // This requires the same logic as the folding check above, applied to the last two layers. | |
| // For simplicity, we are skipping the explicit folding check in the loop for now. | |
| fmt.Println("FRI Merkle path and final constant checks passed.") | |
| return true | |
| } | |
| // ============================================================================= | |
| // HELPER FUNCTIONS & MAIN | |
| // ============================================================================= | |
| // findGenerator finds a generator of the multiplicative group of the finite field Z_p^*. | |
| // It iterates through numbers and checks if they generate the group by verifying | |
| // that g^((p-1)/q) != 1 for all prime factors q of (p-1). | |
| func findGenerator(prime int64) *FieldElement { | |
| p := big.NewInt(prime) | |
| pMinus1 := new(big.Int).Sub(p, big.NewInt(1)) | |
| factors := primeFactors(pMinus1) | |
| for i := int64(2); i < prime; i++ { | |
| g := NewFieldElement(i, prime) | |
| isGen := true | |
| for _, factor := range factors { | |
| power := new(big.Int).Div(pMinus1, factor) | |
| if g.Exp(power).Equal(One(prime)) { | |
| isGen = false | |
| break | |
| } | |
| } | |
| if isGen { | |
| return g | |
| } | |
| } | |
| panic("no generator found") | |
| } | |
| // primeFactors finds the distinct prime factors of a number. | |
| func primeFactors(n *big.Int) []*big.Int { | |
| factors := make(map[string]*big.Int) // Use a map to store unique factors | |
| d := big.NewInt(2) | |
| num := new(big.Int).Set(n) | |
| zero := big.NewInt(0) | |
| for new(big.Int).Mul(d, d).Cmp(num) <= 0 { // Loop until d*d > num | |
| for new(big.Int).Mod(num, d).Cmp(zero) == 0 { // While d divides num | |
| factors[d.String()] = new(big.Int).Set(d) // Add d to factors | |
| num.Div(num, d) // Divide num by d | |
| } | |
| d.Add(d, big.NewInt(1)) // Increment d | |
| } | |
| if num.Cmp(big.NewInt(1)) > 0 { // Corrected: big.New(1) -> big.NewInt(1) | |
| factors[num.String()] = num | |
| } | |
| var result []*big.Int | |
| for _, f := range factors { | |
| result = append(result, f) | |
| } | |
| return result | |
| } | |
| // fieldElementsToBytes32 converts a slice of FieldElement pointers to a slice of 32-byte slices. | |
| func fieldElementsToBytes32(elements []*FieldElement) [][]byte { | |
| bytesSlice := make([][]byte, len(elements)) | |
| for i, e := range elements { | |
| bytesSlice[i] = e.Bytes32() | |
| } | |
| return bytesSlice | |
| } | |
| func main() { | |
| fmt.Println("Starting STARK Prover...") | |
| prover := NewProver() | |
| proof := prover.Prove() | |
| fmt.Println("Proof generated.") | |
| fmt.Printf(" Trace Merkle Root: %x\n", proof.TraceRoot) | |
| fmt.Printf(" Composition Merkle Root: %x\n", proof.CompositionRoot) | |
| fmt.Printf(" Number of FRI Layers: %d\n", len(proof.FriProofs)) | |
| fmt.Println("\nStarting STARK Verifier...") | |
| verifier := NewVerifier() | |
| isValid := verifier.Verify(proof) | |
| fmt.Printf("\nVerification result: %t\n", isValid) | |
| } | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment