Created
January 27, 2023 02:02
-
-
Save djouallah/d4ce3eaf304988f1fbe07ce076481b0d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from datetime import datetime, date, timedelta | |
import urllib.request as urllib2 | |
import tempfile | |
import pandas as pd | |
import pyarrow as pa | |
import pyarrow.dataset as ds | |
import re ,shutil | |
from urllib.request import urlopen | |
import os | |
import adlfs | |
from dotenv import load_dotenv | |
load_dotenv() | |
AZURE_STORAGE_ACCOUNT_NAME = os.getenv('AZURE_STORAGE_ACCOUNT_NAME') | |
AZURE_STORAGE_ACCOUNT_KEY = os.getenv('AZURE_STORAGE_ACCOUNT_KEY') | |
table_path = os.getenv('table_path') | |
fs = adlfs.AzureBlobFileSystem(account_name=AZURE_STORAGE_ACCOUNT_NAME, account_key=AZURE_STORAGE_ACCOUNT_KEY ) | |
def get_file_path(filename): | |
return os.path.join(tempfile.gettempdir(), filename) | |
def load(request): | |
appended_data = [] | |
url = "http://nemweb.com.au/Reports/Current/Dispatch_SCADA/" | |
result = urlopen(url).read().decode('utf-8') | |
pattern = re.compile(r'[\w.]*.zip') | |
filelist1 = pattern.findall(result) | |
filelist_unique = dict.fromkeys(filelist1) | |
filelist_sorted=sorted(filelist_unique, reverse=True) | |
filelist = filelist_sorted[:1000] | |
try: | |
df = ds.dataset(table_path +"/scada/log/part-0.parquet",filesystem=fs).to_table().to_pandas() | |
except: | |
df=pd.DataFrame(columns=['file']) | |
file_loaded= df['file'].unique() | |
#print (df) | |
current = file_loaded.tolist() | |
#print(current) | |
files_to_upload = list(set(filelist) - set(current)) | |
files_to_upload = list(dict.fromkeys(files_to_upload)) | |
print(str(len(files_to_upload)) + ' New File Loaded') | |
if len(files_to_upload) != 0 : | |
for x in files_to_upload: | |
with urlopen(url+x) as source, open(get_file_path(x), 'w+b') as target: | |
shutil.copyfileobj(source, target) | |
df = pd.read_csv(get_file_path(x),skiprows=1,usecols=["SETTLEMENTDATE", "DUID", "SCADAVALUE"],parse_dates=["SETTLEMENTDATE"]) | |
df=df.dropna(how='all') #drop na | |
df['SETTLEMENTDATE']= pd.to_datetime(df['SETTLEMENTDATE']) | |
df['Date'] = df['SETTLEMENTDATE'].dt.date | |
df['file'] = x | |
appended_data.append(df) | |
# see pd.concat documentation for more info | |
appended_data = pd.concat(appended_data) | |
existing_file = pd.DataFrame( file_loaded) | |
new_file = pd.DataFrame( appended_data['file'].unique()) | |
log = pd.concat ([new_file,existing_file], ignore_index=True) | |
#print(log) | |
log.rename(columns={0: 'file'}, inplace=True) | |
log_tb=pa.Table.from_pandas(log,preserve_index=False) | |
#print(log_tb) | |
log_schema = pa.schema([pa.field('file', pa.string())]) | |
log_tb=log_tb.cast(target_schema=log_schema) | |
tb=pa.Table.from_pandas(appended_data,preserve_index=False) | |
my_schema = pa.schema([ | |
pa.field('SETTLEMENTDATE', pa.timestamp('us')), | |
pa.field('DUID', pa.string()), | |
pa.field('SCADAVALUE', pa.float64()), | |
pa.field('Date', pa.date32()), | |
pa.field('file', pa.string()) | |
] | |
) | |
xx=tb.cast(target_schema=my_schema) | |
parquet_file_name=(appended_data['SETTLEMENTDATE'].max()).strftime('%Y-%m-%d-%X') + '{i}.parquet' | |
ds.write_dataset(xx,table_path + "/scada/data", filesystem=fs,format="parquet" , partitioning=['Date'],partitioning_flavor="hive",basename_template =parquet_file_name, max_rows_per_group=120000,existing_data_behavior="overwrite_or_ignore") | |
ds.write_dataset(log_tb,table_path +"/scada/log",filesystem=fs, format="parquet" ,existing_data_behavior="overwrite_or_ignore") | |
return "done" | |
load("request") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment