Created
January 1, 2020 02:18
-
-
Save djsegal/12a0ed89558005f6aa64adf73799903f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import geopandas | |
import pickle | |
from sklearn.cluster import KMeans | |
from sklearn.pipeline import Pipeline | |
from sklearn.preprocessing import StandardScaler | |
class ClusterData(): | |
def __init__(self, cur_data): | |
all_data = _make_cluster_data(cur_data, 1, None) | |
bkn_data = _make_cluster_data(cur_data, 10, True) | |
nyc_data = _make_cluster_data(cur_data, 13, False) | |
all_data["is_com"] = True | |
bkn_data["is_bkn"] = True | |
self_data = pd.concat([all_data, nyc_data, bkn_data], ignore_index=True, sort=False) | |
self_data["is_com"] = self_data.is_com.fillna(False) | |
self_data["is_bkn"] = self_data.is_bkn.fillna(False) | |
self.data = self_data | |
self.save() | |
def save(self): | |
pickle.dump(self, open( "data/clusters.pkl", "wb" ) ) | |
def load(): | |
return pickle.load(open( "data/clusters.pkl", "rb" )) | |
def boot(): | |
try: | |
return ClusterData.load() | |
except: | |
print("buidling clusters...") | |
return ClusterData() | |
def _make_cluster_data(cur_data, n_clusters, is_brooklyn): | |
cluster_gdf = cur_data[["id","price"]].copy() | |
cluster_gdf["price"] = np.log10(cluster_gdf["price"]) | |
cluster_gdf = cluster_gdf.groupby("id").median() | |
cluster_cols = ["price","geometry","is_brooklyn"] | |
merge_data = cur_data[["id", *cluster_cols]].drop("price", axis=1) | |
cluster_gdf = cluster_gdf.merge(merge_data, on="id", how="left")[cluster_cols] | |
cluster_gdf = geopandas.GeoDataFrame(cluster_gdf) | |
cluster_gdf["longitude"] = cluster_gdf.geometry.map(lambda cur_geom: cur_geom.x) | |
cluster_gdf["latitude"] = cluster_gdf.geometry.map(lambda cur_geom: cur_geom.y) | |
if is_brooklyn == True: cluster_gdf = cluster_gdf[cluster_gdf.is_brooklyn] | |
if is_brooklyn == False: cluster_gdf = cluster_gdf[~cluster_gdf.is_brooklyn] | |
cluster_gdf = cluster_gdf.drop("geometry", axis=1) | |
cur_scaler = StandardScaler() | |
cur_kmeans = KMeans( | |
n_clusters=n_clusters, n_jobs=-1, random_state=42 | |
) | |
cluster_pipeline = Pipeline([ | |
("scaler", cur_scaler), | |
("kmeans", cur_kmeans) | |
]) | |
cluster_fit = cluster_pipeline.fit(cluster_gdf) | |
cur_prices = [] | |
cur_lat_list = [] | |
cur_long_list = [] | |
cur_transform = cur_scaler.inverse_transform | |
cur_centers = cur_kmeans.cluster_centers_ | |
for cur_row in cur_transform(cur_centers): | |
cur_price = cur_row[0] | |
if cur_price < cluster_gdf.price.median() : continue | |
cur_prices.append(cur_price) | |
cur_long, cur_lat = cur_row[-2:] | |
cur_lat_list.append(cur_lat) | |
cur_long_list.append(cur_long) | |
cluster_gdf = pd.DataFrame.transpose( | |
pd.DataFrame(data=[cur_lat_list, cur_long_list, 10 ** np.array(cur_prices)]) | |
) | |
cluster_gdf.columns = ["lat", "lon", "price"] | |
cluster_gdf = geopandas.GeoDataFrame( | |
cluster_gdf, geometry=geopandas.points_from_xy(cluster_gdf.lon, cluster_gdf.lat) | |
) | |
return cluster_gdf |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment