Last active
January 1, 2020 04:34
-
-
Save djsegal/25ca2a2526b5d13bcc86686a2d8aba67 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
cur_data = price_data.copy() | |
cur_data = cur_data.merge(rental_data, on="id") | |
cur_data = cur_data.merge(location_data, on="id") | |
X_train, X_test, y_train, y_test = \ | |
custom_train_test_split(cur_data) | |
pass_cols = ["is_brooklyn", "density"] | |
drop_cols = ["year", "geometry", "zipcode"] | |
one_hot_cols = ["month"] | |
poly_cols = rental_data.columns.drop("id").tolist() | |
mentioned_cols = [ | |
"id", "price", | |
*one_hot_cols, *drop_cols, | |
*poly_cols, *pass_cols | |
] | |
assert sorted(cur_data.columns) == sorted(mentioned_cols) | |
cur_one_hot = OneHotEncoder(categories="auto") | |
cur_poly_feats = PolynomialFeatures( | |
degree=2, include_bias=False, interaction_only=True | |
) | |
cur_sub_pipeline = Pipeline([ | |
("reciprocal", ReciprocalFeatures()), | |
("polynomial", cur_poly_feats), | |
("cancel", VarianceThreshold()), | |
("clean", CleanFeatures()), | |
("box_cox", PowerTransformer(method="box-cox")) | |
]) | |
cur_col_transformers = [ | |
("one_hot", cur_one_hot, one_hot_cols), | |
("poly_feats", cur_sub_pipeline, poly_cols), | |
("passthrough", PassThroughTransformer(), pass_cols) | |
] | |
cur_transformer = ColumnTransformer(cur_col_transformers) | |
cur_selector = SelectFromModel( | |
LogTransformedTargetRegressor( | |
LassoCV(cv=4, n_jobs=-1, max_iter=5e4) | |
), threshold=5e-4 | |
) | |
cur_regressor = LogTransformedTargetRegressor( | |
ElasticNetCV(cv=4, n_jobs=-1, max_iter=5e4) | |
) | |
cur_pipeline = Pipeline([ | |
("transformer", cur_transformer), | |
("scalar", StandardScaler()), | |
("selector", cur_selector), | |
("regressor", cur_regressor) | |
]) | |
cur_pipeline.fit(X_train, y_train) | |
cur_pipeline.score(X_test, y_test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This uses the following code:
And produces the following csv of feature importances: