Last active
January 2, 2020 07:40
-
-
Save djsegal/d8c9e02fa75490e2686c4a866438cad7 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
def custom_train_test_split(cur_data, random_state=42, cur_target="price", cur_boolean="is_brooklyn"): | |
if cur_boolean in cur_data.columns: | |
cur_train_1, cur_test_1 = _custom_train_test_split( | |
cur_data[cur_data[cur_boolean]], random_state, cur_target | |
) | |
cur_train_2, cur_test_2 = _custom_train_test_split( | |
cur_data[~cur_data[cur_boolean]], random_state, cur_target | |
) | |
cur_train = pd.concat([cur_train_1, cur_train_2]) | |
cur_test = pd.concat([cur_test_1, cur_test_2]) | |
else: | |
cur_train, cur_test = _custom_train_test_split( | |
cur_data, random_state, cur_target | |
) | |
cur_train = cur_train.sample(frac=1, random_state=random_state) | |
cur_test = cur_test.sample(frac=1, random_state=random_state) | |
X_train = cur_train.drop(columns=["id", cur_target]) | |
X_test = cur_test.drop(columns=["id", cur_target]) | |
y_train = cur_train[cur_target] | |
y_test = cur_test[cur_target] | |
return X_train, X_test, y_train, y_test | |
def _custom_train_test_split(cur_data, random_state, cur_target): | |
bin_count = 10 | |
binned_ids = pd.qcut( | |
cur_data.groupby("id")["id"].count(), | |
bin_count, labels=False | |
) | |
def _train_test_lambda(cur_value): | |
sub_bin_ids = binned_ids[binned_ids == cur_value] | |
sampled_ids = sub_bin_ids.sample( | |
frac=0.1, random_state=random_state | |
) | |
return sampled_ids.index | |
cur_map = map(_train_test_lambda, range(bin_count)) | |
test_ids = [ | |
cur_item for cur_list in cur_map for cur_item in cur_list | |
] | |
cur_test_1 = cur_data[cur_data.id.isin(test_ids)] | |
cur_train = cur_data[~cur_data.id.isin(test_ids)] | |
cur_stratify = pd.qcut(cur_train[cur_target], bin_count, labels=False) | |
cur_count = int(round( 0.2 * len(cur_data) - len(cur_test_1) )) | |
cur_train, cur_test_2 = train_test_split( | |
cur_train, | |
test_size=cur_count, | |
stratify=cur_stratify, | |
random_state=random_state | |
) | |
cur_test = pd.concat([cur_test_1, cur_test_2]) | |
return cur_train, cur_test |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment