Skip to content

Instantly share code, notes, and snippets.

@djsutherland
Created November 1, 2011 05:10
Show Gist options
  • Save djsutherland/1329976 to your computer and use it in GitHub Desktop.
Save djsutherland/1329976 to your computer and use it in GitHub Desktop.
Code for a Hidden Markov Model, along with some sample data / parameters for testing.
4 # number of states
START
COLD
HOT
END
3 # size of vocab
1
2
3
# transition matrix
0.0 0.5 0.5 0.0 # from start
0.0 0.8 0.1 0.1 # from cold
0.0 0.1 0.8 0.1 # from hot
0.0 0.0 0.0 1.0 # from end
# emission matrix
0.0 0.0 0.0 # from start
0.7 0.2 0.1 # from cold
0.1 0.2 0.7 # from hot
0.0 0.0 0.0 # from end
#!/usr/bin/env python
"""
CS 65 Lab #3 -- 5 Oct 2008
Dougal Sutherland
Implements a hidden Markov model, based on Jurafsky + Martin's presentation,
which is in turn based off work by Jason Eisner. We test our program with
data from Eisner's spreadsheets.
"""
identity = lambda x: x
class HiddenMarkovModel(object):
"""A hidden Markov model."""
def __init__(self, states, transitions, emissions, vocab):
"""
states - a list/tuple of states, e.g. ('start', 'hot', 'cold', 'end')
start state needs to be first, end state last
states are numbered by their order here
transitions - the probabilities to go from one state to another
transitions[from_state][to_state] = prob
emissions - the probabilities of an observation for a given state
emissions[state][observation] = prob
vocab: a list/tuple of the names of observable values, in order
"""
self.states = states
self.real_states = states[1:-1]
self.start_state = 0
self.end_state = len(states) - 1
self.transitions = transitions
self.emissions = emissions
self.vocab = vocab
# functions to get stuff one-indexed
state_num = lambda self, n: self.states[n]
state_nums = lambda self: xrange(1, len(self.real_states) + 1)
vocab_num = lambda self, n: self.vocab[n - 1]
vocab_nums = lambda self: xrange(1, len(self.vocab) + 1)
num_for_vocab = lambda self, s: self.vocab.index(s) + 1
def transition(self, from_state, to_state):
return self.transitions[from_state][to_state]
def emission(self, state, observed):
return self.emissions[state][observed - 1]
# helper stuff
def _normalize_observations(self, observations):
return [None] + [self.num_for_vocab(o) if o.__class__ == str else o
for o in observations]
def _init_trellis(self, observed, forward=True, init_func=identity):
trellis = [ [None for j in range(len(observed))]
for i in range(len(self.real_states) + 1) ]
if forward:
v = lambda s: self.transition(0, s) * self.emission(s, observed[1])
else:
v = lambda s: self.transition(s, self.end_state)
init_pos = 1 if forward else -1
for state in self.state_nums():
trellis[state][init_pos] = init_func( v(state) )
return trellis
def _follow_backpointers(self, trellis, start):
# don't bother branching
pointer = start[0]
seq = [pointer, self.end_state]
for t in reversed(xrange(1, len(trellis[1]))):
val, backs = trellis[pointer][t]
pointer = backs[0]
seq.insert(0, pointer)
return seq
# actual algorithms
def forward_prob(self, observations, return_trellis=False):
"""
Returns the probability of seeing the given `observations` sequence,
using the Forward algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed)
for t in range(2, len(observed)):
for state in self.state_nums():
trellis[state][t] = sum(
self.transition(old_state, state)
* self.emission(state, observed[t])
* trellis[old_state][t-1]
for old_state in self.state_nums()
)
final = sum(trellis[state][-1] * self.transition(state, -1)
for state in self.state_nums())
return (final, trellis) if return_trellis else final
def backward_prob(self, observations, return_trellis=False):
"""
Returns the probability of seeing the given `observations` sequence,
using the Backward algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed, forward=False)
for t in reversed(range(1, len(observed) - 1)):
for state in self.state_nums():
trellis[state][t] = sum(
self.transition(state, next_state)
* self.emission(next_state, observed[t+1])
* trellis[next_state][t+1]
for next_state in self.state_nums()
)
final = sum(self.transition(0, state)
* self.emission(state, observed[1])
* trellis[state][1]
for state in self.state_nums())
return (final, trellis) if return_trellis else final
def viterbi_sequence(self, observations, return_trellis=False):
"""
Returns the most likely sequence of hidden states, for a given
sequence of observations. Uses the Viterbi algorithm.
"""
observed = self._normalize_observations(observations)
trellis = self._init_trellis(observed, init_func=lambda val: (val, [0]))
for t in range(2, len(observed)):
for state in self.state_nums():
emission_prob = self.emission(state, observed[t])
last = [(old_state, trellis[old_state][t-1][0] * \
self.transition(old_state, state) * \
emission_prob)
for old_state in self.state_nums()]
highest = max(last, key=lambda p: p[1])[1]
backs = [s for s, val in last if val == highest]
trellis[state][t] = (highest, backs)
last = [(old_state, trellis[old_state][-1][0] * \
self.transition(old_state, self.end_state))
for old_state in self.state_nums()]
highest = max(last, key = lambda p: p[1])[1]
backs = [s for s, val in last if val == highest]
seq = self._follow_backpointers(trellis, backs)
return (seq, trellis) if return_trellis else seq
def train_on_obs(self, observations, return_probs=False):
"""
Trains the model once, using the forward-backward algorithm. This
function returns a new HMM instance rather than modifying this one.
"""
observed = self._normalize_observations(observations)
forward_prob, forwards = self.forward_prob( observations, True)
backward_prob, backwards = self.backward_prob(observations, True)
# gamma values
prob_of_state_at_time = posat = [None] + [
[0] + [forwards[state][t] * backwards[state][t] / forward_prob
for t in range(1, len(observations)+1)]
for state in self.state_nums()]
# xi values
prob_of_transition = pot = [None] + [
[None] + [
[0] + [forwards[state1][t]
* self.transition(state1, state2)
* self.emission(state2, observed[t+1])
* backwards[state2][t+1]
/ forward_prob
for t in range(1, len(observations))]
for state2 in self.state_nums()]
for state1 in self.state_nums()]
# new transition probabilities
trans = [[0 for j in range(len(self.states))]
for i in range(len(self.states))]
trans[self.end_state][self.end_state] = 1
for state in self.state_nums():
state_prob = sum(posat[state])
trans[0][state] = posat[state][1]
trans[state][-1] = posat[state][-1] / state_prob
for oth in self.state_nums():
trans[state][oth] = sum(pot[state][oth]) / state_prob
# new emission probabilities
emit = [[0 for j in range(len(self.vocab))]
for i in range(len(self.states))]
for state in self.state_nums():
for output in range(1, len(self.vocab) + 1):
n = sum(posat[state][t] for t in range(1, len(observations)+1)
if observed[t] == output)
emit[state][output-1] = n / sum(posat[state])
trained = HiddenMarkovModel(self.states, trans, emit, self.vocab)
return (trained, posat, pot) if return_probs else trained
# ======================
# = reading from files =
# ======================
def normalize(string):
if '#' in string:
string = string[:string.index('#')]
return string.strip()
def make_hmm_from_file(f):
def nextline():
line = f.readline()
if line == '': # EOF
return None
else:
return normalize(line) or nextline()
n = int(nextline())
states = [nextline() for i in range(n)] # <3 list comprehension abuse
num_vocab = int(nextline())
vocab = [nextline() for i in range(num_vocab)]
transitions = [[float(x) for x in nextline().split()] for i in range(n)]
emissions = [[float(x) for x in nextline().split()] for i in range(n)]
assert nextline() is None
return HiddenMarkovModel(states, transitions, emissions, vocab)
def read_observations_from_file(f):
return filter(lambda x: x, [normalize(line) for line in f.readlines()])
# =========
# = tests =
# =========
import unittest
class TestHMM(unittest.TestCase):
def setUp(self):
# it's complicated to pass args to a testcase, so just use globals
self.hmm = make_hmm_from_file(file(HMM_FILENAME))
self.obs = read_observations_from_file(file(OBS_FILENAME))
def test_forward(self):
prob, trellis = self.hmm.forward_prob(self.obs, True)
self.assertAlmostEqual(prob, 9.1276e-19, 21)
self.assertAlmostEqual(trellis[1][1], 0.1, 4)
self.assertAlmostEqual(trellis[1][3], 0.00135, 5)
self.assertAlmostEqual(trellis[1][6], 8.71549e-5, 9)
self.assertAlmostEqual(trellis[1][13], 5.70827e-9, 9)
self.assertAlmostEqual(trellis[1][20], 1.3157e-10, 14)
self.assertAlmostEqual(trellis[1][27], 3.1912e-14, 13)
self.assertAlmostEqual(trellis[1][33], 2.0498e-18, 22)
self.assertAlmostEqual(trellis[2][1], 0.1, 4)
self.assertAlmostEqual(trellis[2][3], 0.03591, 5)
self.assertAlmostEqual(trellis[2][6], 5.30337e-4, 8)
self.assertAlmostEqual(trellis[2][13], 1.37864e-7, 11)
self.assertAlmostEqual(trellis[2][20], 2.7819e-12, 15)
self.assertAlmostEqual(trellis[2][27], 4.6599e-15, 18)
self.assertAlmostEqual(trellis[2][33], 7.0777e-18, 22)
def test_backward(self):
prob, trellis = self.hmm.backward_prob(self.obs, True)
self.assertAlmostEqual(prob, 9.1276e-19, 21)
self.assertAlmostEqual(trellis[1][1], 1.1780e-18, 22)
self.assertAlmostEqual(trellis[1][3], 7.2496e-18, 22)
self.assertAlmostEqual(trellis[1][6], 3.3422e-16, 20)
self.assertAlmostEqual(trellis[1][13], 3.5380e-11, 15)
self.assertAlmostEqual(trellis[1][20], 6.77837e-9, 14)
self.assertAlmostEqual(trellis[1][27], 1.44877e-5, 10)
self.assertAlmostEqual(trellis[1][33], 0.1, 4)
self.assertAlmostEqual(trellis[2][1], 7.9496e-18, 22)
self.assertAlmostEqual(trellis[2][3], 2.5145e-17, 21)
self.assertAlmostEqual(trellis[2][6], 1.6662e-15, 19)
self.assertAlmostEqual(trellis[2][13], 5.1558e-12, 16)
self.assertAlmostEqual(trellis[2][20], 7.52345e-9, 14)
self.assertAlmostEqual(trellis[2][27], 9.66609e-5, 9)
self.assertAlmostEqual(trellis[2][33], 0.1, 4)
def test_viterbi(self):
path, trellis = self.hmm.viterbi_sequence(self.obs, True)
self.assertEqual(path, [0] + [2]*13 + [1]*14 + [2]*6 + [3])
self.assertAlmostEqual(trellis[1][1] [0], 0.1, 4)
self.assertAlmostEqual(trellis[1][6] [0], 5.62e-05, 7)
self.assertAlmostEqual(trellis[1][7] [0], 4.50e-06, 8)
self.assertAlmostEqual(trellis[1][16][0], 1.99e-09, 11)
self.assertAlmostEqual(trellis[1][17][0], 3.18e-10, 12)
self.assertAlmostEqual(trellis[1][23][0], 4.00e-13, 15)
self.assertAlmostEqual(trellis[1][25][0], 1.26e-13, 15)
self.assertAlmostEqual(trellis[1][29][0], 7.20e-17, 19)
self.assertAlmostEqual(trellis[1][30][0], 1.15e-17, 19)
self.assertAlmostEqual(trellis[1][32][0], 7.90e-19, 21)
self.assertAlmostEqual(trellis[1][33][0], 1.26e-19, 21)
self.assertAlmostEqual(trellis[2][ 1][0], 0.1, 4)
self.assertAlmostEqual(trellis[2][ 4][0], 0.00502, 5)
self.assertAlmostEqual(trellis[2][ 6][0], 0.00045, 5)
self.assertAlmostEqual(trellis[2][12][0], 1.62e-07, 9)
self.assertAlmostEqual(trellis[2][18][0], 3.18e-12, 14)
self.assertAlmostEqual(trellis[2][19][0], 1.78e-12, 14)
self.assertAlmostEqual(trellis[2][23][0], 5.00e-14, 16)
self.assertAlmostEqual(trellis[2][28][0], 7.87e-16, 18)
self.assertAlmostEqual(trellis[2][29][0], 4.41e-16, 18)
self.assertAlmostEqual(trellis[2][30][0], 7.06e-17, 19)
self.assertAlmostEqual(trellis[2][33][0], 1.01e-18, 20)
def test_learning_probs(self):
trained, gamma, xi = self.hmm.train_on_obs(self.obs, True)
self.assertAlmostEqual(gamma[1][1], 0.129, 3)
self.assertAlmostEqual(gamma[1][3], 0.011, 3)
self.assertAlmostEqual(gamma[1][7], 0.022, 3)
self.assertAlmostEqual(gamma[1][14], 0.887, 3)
self.assertAlmostEqual(gamma[1][18], 0.994, 3)
self.assertAlmostEqual(gamma[1][23], 0.961, 3)
self.assertAlmostEqual(gamma[1][27], 0.507, 3)
self.assertAlmostEqual(gamma[1][33], 0.225, 3)
self.assertAlmostEqual(gamma[2][1], 0.871, 3)
self.assertAlmostEqual(gamma[2][3], 0.989, 3)
self.assertAlmostEqual(gamma[2][7], 0.978, 3)
self.assertAlmostEqual(gamma[2][14], 0.113, 3)
self.assertAlmostEqual(gamma[2][18], 0.006, 3)
self.assertAlmostEqual(gamma[2][23], 0.039, 3)
self.assertAlmostEqual(gamma[2][27], 0.493, 3)
self.assertAlmostEqual(gamma[2][33], 0.775, 3)
self.assertAlmostEqual(xi[1][1][1], 0.021, 3)
self.assertAlmostEqual(xi[1][1][12], 0.128, 3)
self.assertAlmostEqual(xi[1][1][32], 0.13, 3)
self.assertAlmostEqual(xi[2][1][1], 0.003, 3)
self.assertAlmostEqual(xi[2][1][22], 0.017, 3)
self.assertAlmostEqual(xi[2][1][32], 0.095, 3)
self.assertAlmostEqual(xi[1][2][4], 0.02, 3)
self.assertAlmostEqual(xi[1][2][16], 0.018, 3)
self.assertAlmostEqual(xi[1][2][29], 0.010, 3)
self.assertAlmostEqual(xi[2][2][2], 0.972, 3)
self.assertAlmostEqual(xi[2][2][12], 0.762, 3)
self.assertAlmostEqual(xi[2][2][28], 0.907, 3)
def test_learning_results(self):
trained = self.hmm.train_on_obs(self.obs)
tr = trained.transition
self.assertAlmostEqual(tr(0, 0), 0, 5)
self.assertAlmostEqual(tr(0, 1), 0.1291, 4)
self.assertAlmostEqual(tr(0, 2), 0.8709, 4)
self.assertAlmostEqual(tr(0, 3), 0, 4)
self.assertAlmostEqual(tr(1, 0), 0, 5)
self.assertAlmostEqual(tr(1, 1), 0.8757, 4)
self.assertAlmostEqual(tr(1, 2), 0.1090, 4)
self.assertAlmostEqual(tr(1, 3), 0.0153, 4)
self.assertAlmostEqual(tr(2, 0), 0, 5)
self.assertAlmostEqual(tr(2, 1), 0.0925, 4)
self.assertAlmostEqual(tr(2, 2), 0.8652, 4)
self.assertAlmostEqual(tr(2, 3), 0.0423, 4)
self.assertAlmostEqual(tr(3, 0), 0, 5)
self.assertAlmostEqual(tr(3, 1), 0, 4)
self.assertAlmostEqual(tr(3, 2), 0, 4)
self.assertAlmostEqual(tr(3, 3), 1, 4)
em = trained.emission
self.assertAlmostEqual(em(0, 1), 0, 4)
self.assertAlmostEqual(em(0, 2), 0, 4)
self.assertAlmostEqual(em(0, 3), 0, 4)
self.assertAlmostEqual(em(1, 1), 0.6765, 4)
self.assertAlmostEqual(em(1, 2), 0.2188, 4)
self.assertAlmostEqual(em(1, 3), 0.1047, 4)
self.assertAlmostEqual(em(2, 1), 0.0584, 4)
self.assertAlmostEqual(em(2, 2), 0.4251, 4)
self.assertAlmostEqual(em(2, 3), 0.5165, 4)
self.assertAlmostEqual(em(3, 1), 0, 4)
self.assertAlmostEqual(em(3, 2), 0, 4)
self.assertAlmostEqual(em(3, 3), 0, 4)
# train 9 more times
for i in range(9):
trained = trained.train_on_obs(self.obs)
tr = trained.transition
self.assertAlmostEqual(tr(0, 0), 0, 4)
self.assertAlmostEqual(tr(0, 1), 0, 4)
self.assertAlmostEqual(tr(0, 2), 1, 4)
self.assertAlmostEqual(tr(0, 3), 0, 4)
self.assertAlmostEqual(tr(1, 0), 0, 4)
self.assertAlmostEqual(tr(1, 1), 0.9337, 4)
self.assertAlmostEqual(tr(1, 2), 0.0663, 4)
self.assertAlmostEqual(tr(1, 3), 0, 4)
self.assertAlmostEqual(tr(2, 0), 0, 4)
self.assertAlmostEqual(tr(2, 1), 0.0718, 4)
self.assertAlmostEqual(tr(2, 2), 0.8650, 4)
self.assertAlmostEqual(tr(2, 3), 0.0632, 4)
self.assertAlmostEqual(tr(3, 0), 0, 4)
self.assertAlmostEqual(tr(3, 1), 0, 4)
self.assertAlmostEqual(tr(3, 2), 0, 4)
self.assertAlmostEqual(tr(3, 3), 1, 4)
em = trained.emission
self.assertAlmostEqual(em(0, 1), 0, 4)
self.assertAlmostEqual(em(0, 2), 0, 4)
self.assertAlmostEqual(em(0, 3), 0, 4)
self.assertAlmostEqual(em(1, 1), 0.6407, 4)
self.assertAlmostEqual(em(1, 2), 0.1481, 4)
self.assertAlmostEqual(em(1, 3), 0.2112, 4)
self.assertAlmostEqual(em(2, 1), 0.00016,5)
self.assertAlmostEqual(em(2, 2), 0.5341, 4)
self.assertAlmostEqual(em(2, 3), 0.4657, 4)
self.assertAlmostEqual(em(3, 1), 0, 4)
self.assertAlmostEqual(em(3, 2), 0, 4)
self.assertAlmostEqual(em(3, 3), 0, 4)
if __name__ == '__main__':
import sys
HMM_FILENAME = sys.argv[1] if len(sys.argv) >= 2 else 'example.hmm'
OBS_FILENAME = sys.argv[2] if len(sys.argv) >= 3 else 'observations.txt'
unittest.main()
2
3
3
2
3
2
3
2
2
3
1
3
3
1
1
1
2
1
1
1
3
1
2
1
1
1
2
3
3
2
3
2
2
@vermaujjwal14
Copy link

Sir how can I use Hmm for stemming?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment