Last active
April 2, 2020 14:19
-
-
Save dkurt/d9dfa96c0f4e9a09d8018351a9f08ef4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import ceil | |
d = 2 | |
h = 3 | |
w = 4 | |
scale_d = 3 | |
scale_h = 3 | |
scale_w = 2 | |
c = 3 | |
input = Variable(torch.randn(1, c, d, h, w)) | |
resize = nn.Upsample(size=[d*scale_d, h*scale_h, w*scale_w], mode='trilinear', align_corners=False) | |
resize.eval() | |
out_resize = resize(input) | |
kernel_d = (2 * scale_d - scale_d % 2) | |
kernel_h = (2 * scale_h - scale_h % 2) | |
kernel_w = (2 * scale_w - scale_w % 2) | |
print('kernel', kernel_d, kernel_h, kernel_w) | |
pad_d = ceil((scale_d - 1) / 2) | |
pad_h = ceil((scale_h - 1) / 2) | |
pad_w = ceil((scale_w - 1) / 2) | |
def bilinear_weighs(): | |
weights = torch.randn(c, 1, kernel_d, kernel_h, kernel_w) | |
f_x = ceil(kernel_w / 2.0) | |
coeff_x = (kernel_w - 1) / (2.0 * f_x) | |
f_y = ceil(kernel_h / 2.0) | |
coeff_y = (kernel_h - 1) / (2.0 * f_y) | |
f_d = ceil(kernel_d / 2.0) | |
coeff_d = (kernel_d - 1) / (2.0 * f_d) | |
for z in range(kernel_d): | |
for y in range(kernel_h): | |
for x in range(kernel_w): | |
# print(x, f, coeff, abs(x / f - coeff), 1 - abs(x / f - coeff)) | |
weights[:,:,z,y,x] = (1 - abs(x / f_x - coeff_x)) * (1 - abs(y / f_y - coeff_y)) * (1 - abs(z / f_d - coeff_d)) | |
return weights | |
weights = bilinear_weighs() | |
deconv = torch.nn.functional.conv_transpose2d(input, weights, bias=None, | |
stride=(scale_d, scale_h, scale_w), | |
padding=(pad_d, pad_h, pad_w), | |
output_padding=(0, 0, 0), | |
groups=c, dilation=(1, 1, 1)) | |
fix_scale_d = (kernel_d - 1) / (2.0 * ceil(kernel_d / 2.0)) | |
fix_scale_h = (kernel_h - 1) / (2.0 * ceil(kernel_h / 2.0)) | |
fix_scale_w = (kernel_w - 1) / (2.0 * ceil(kernel_w / 2.0)) | |
deconv[:,:,0,:,:] /= fix_scale_d | |
deconv[:,:,-1,:,:] /= fix_scale_d | |
deconv[:,:,:,0,:] /= fix_scale_h | |
deconv[:,:,:,-1,:] /= fix_scale_h | |
deconv[:,:,:,:,0] /= fix_scale_w | |
deconv[:,:,:,:,-1] /= fix_scale_w | |
print(out_resize[0, 0, 0]) | |
print(deconv[0, 0, 0]) | |
print(out_resize.shape) | |
print(deconv.shape) | |
print(np.max(np.abs(np.array(out_resize) - np.array(deconv)))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment