Last active
February 9, 2021 21:35
-
-
Save dkurt/e37f59467926caca342033119cfc76a0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
from torch.autograd import Variable | |
torch.manual_seed(1412) | |
def fake_unpool(x, pool_inp, pool_out, indices): | |
# perform sanity check | |
ref = nn.MaxUnpool2d(2, stride=2)(x, indices) | |
pool_out_resized = nn.UpsamplingNearest2d(scale_factor=2)(pool_out) | |
x_resized = nn.UpsamplingNearest2d(scale_factor=2)(x) | |
mask = torch.abs(pool_out_resized - pool_inp) < 1e-6 | |
out = x_resized * mask | |
assert torch.max(torch.abs(ref - out)) == 0 | |
return out | |
class MyModel(nn.Module): | |
def __init__(self): | |
super(MyModel, self).__init__() | |
self.pool = nn.MaxPool2d(2, stride=2, return_indices=True) | |
self.conv1 = nn.Conv2d(3, 4, kernel_size=1, stride=1) | |
self.conv2 = nn.Conv2d(4, 4, kernel_size=1, stride=1) | |
def forward(self, x): | |
y = self.conv1(x) | |
output, indices = self.pool(y) | |
conv = self.conv2(output) | |
return fake_unpool(conv, y, output, indices) | |
inp = Variable(torch.randn([1, 3, 6, 8])) | |
model = MyModel() | |
model.eval() | |
out = model(inp) | |
print(out.shape) | |
torch.onnx.export(model, inp, 'model.onnx', input_names=['input'], output_names=['output']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment