Created
October 17, 2014 20:43
-
-
Save dlebauer/4ad8e0b2afb64125d222 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Importing from production database | |
| ---------------------------------- | |
| ```{bash} | |
| mysql -u dlebauer -p"bety" ebi_production < ebi_productiondump.sql | |
| ``` | |
| ```{sql} | |
| delete from traits where user_id not = 15; | |
| ``` | |
| ```{r} | |
| settings <- list(database = list(dbname = "ebi_production", username = "dlebauer", password = "bety")) | |
| con <- query.base.con(settings) | |
| tables <- query.base("show tables;")[,1] | |
| bety <- pull.data.tables(tables) | |
| save(bety, file = "data/bety.RData") | |
| for(table in tables){ | |
| write.csv(bety[[table]], file.path("data", paste0(table, ".csv"))) | |
| } | |
| ``` | |
| ```{r} | |
| library(PEcAn.DB) | |
| library(PEcAn.utils) | |
| library(pecandb) | |
| settings <- list(database = list(driver = "MySQL", | |
| username = "dlebauer", | |
| password = "bety", | |
| dbname = "ebi_production", | |
| host = "localhost")) | |
| create.views(views = "traitsview") | |
| traits <- data.table(query.base("select * from traitsview;")) | |
| ### return only soil respiration data entered by Moein | |
| ghgtraits <- traits[trait %in% c("Rsoil_annual", "Rsoil_het_annual", "R_root_fine_annual", "Soil Het Respiration ", "Soil Respiration", "soil_respiration_m2"),] | |
| # keycols <- c("site_id", "treatment_id", "scientificname", "citation_id", "date") | |
| # setkeyv(ghgtraits, keycols) | |
| # | |
| # x <- ghgtraits[,interaction(site_id, treatment_id, scientificname, citation_id, date)] | |
| # x <- ghgtraits[,.SD, by = list()] | |
| setkey(entity, id) | |
| mt <- bety$managements_treatments[treatment_id %in% ghgtraits$treatment_id, | |
| list(treatment_id, management_id)] | |
| mt2 <- merge(mt, bety$managements, by = "management_id", all.y = FALSE) | |
| ### identify citations with warming studies | |
| warming_treatments <- mt2[grepl("warming", mgmttype), unique(treatment_id)] | |
| warming_sites <- ghgtraits[treatment_id %in% warming_treatments, list(site_id, site, city, author, cityear), by = citation_id] | |
| ghgtraits_warming <- ghgtraits[site_id %in% warming_sites$site_id,] | |
| ### extract covariates | |
| soil_metvars <- bety$variables[name == "soilT" | grepl("SWC", bety$variables$name), | |
| list(variable_id, description, units, name)] | |
| soil_metcovars <- bety$covariates[variable_id %in% soil_metvars$variable_id & | |
| trait_id %in% ghgtraits_warming$trait_id, | |
| list(trait_id, variable_id, level)] | |
| soil_metcovars <- rbind(merge(soil_metcovars, soil_metvars, by = "variable_id")[,list(trait_id, level, name)], | |
| traits[grepl("Moein", user) & (trait == "soilT" | grepl("SWC", trait)) , list(trait_id, level = mean, name = trait)]) | |
| SWCvol_covars <- soil_metcovars[name == "SWC_volumetric", list(trait_id, SWCvol = level)] | |
| SWCgr_covars <- soil_metcovars[grepl("SWC_gravimetric", name), list(trait_id, SWCgr = level)] | |
| temp_covars <- rbind(soil_metcovars[name == "soilT", list(trait_id, soilT = level)]) | |
| ### there are no studies with soil moisture covariates | |
| testthat::expect_equal(sum(bety$covariates[variable_id %in% c(412,473), unique(trait_id)] %in% ghgtraits_warming$trait_id), 0) | |
| ### merge soilT, SWC with ghgtraits_warming | |
| ghgtraits_warming <- merge(ghgtraits_warming, temp_covars, by = "trait_id", all.x = TRUE) | |
| ghgtraits_warming <- merge(ghgtraits_warming, SWCvol_covars, by = "trait_id", all.x = TRUE) | |
| ghgtraits_warming <- merge(ghgtraits_warming, SWCgr_covars, by = "trait_id", all.x = TRUE) | |
| ### edit (hack) the "scientificname" and "genus" fields to use commonname | |
| ghgtraits_warming[citation_id %in% c(541, 675)]$genus <- "Evergreen" | |
| ghgtraits_warming[citation_id == 543]$genus <- "Deciduous" | |
| ### get managements | |
| mgmts <- bety$managements[mgmttype %in% c("warming_soil", "warming_air", "initiation of natural succession", "planting"),list(management_id, date, mgmttype, level)] | |
| mgmts <- merge(mgmts, bety$managements_treatments, by = "management_id", all.x = TRUE) | |
| warming_soil <- mgmts[mgmttype == "warming_soil", list(treatment_id, warming_soil = date, dT_soil = level)] | |
| warming_air <- mgmts[mgmttype == "warming_air", list(treatment_id, warming_air = date, dT_air = level)] | |
| succession <- mgmts[mgmttype == "warming_air", list(treatment_id, succession = date)] | |
| planting <- mgmts[mgmttype == "warming_air", list(treatment_id, planting = date)] | |
| x <- ghgtraits_warming | |
| x <- merge(x, warming_soil, by = "treatment_id", all.x = TRUE) | |
| x <- merge(x, warming_air, by = "treatment_id", all.x = TRUE) | |
| x <- merge(x, succession, by = "treatment_id", all.x = TRUE) | |
| x <- merge(x, planting, by = "treatment_id", all.x = TRUE) | |
| trait_metcovars <- traits[trait %in% c("soilT") | grepl("SWC", trait), | |
| list(lat, lon, treatment_id, scientificname, date, trait, mean)] | |
| write.csv(x, "~/kristasdata.csv") | |
| write.csv(trait_metcovars, "~/kristas_misc_covariates.csv") | |
| ### Which studies do / do not have soilT data | |
| x[, list(withoutT = sum(!is.na(soilT)), withT = sum(is.na(soilT))), by = author] | |
| ### Which studies do / do not have SWC data | |
| swc_check <- x[,list(withSWC=is.na(SWCgr+SWCvol), author)] | |
| swc_check[,sum(withSWC)/length(withSWC), by = author] | |
| ``` | |
| You can also embed plots, for example: | |
| ```{r fig.width=7, fig.height=6} | |
| ghgtraits_warming[,plot(soilT, mean)] | |
| require(ggplot2) | |
| ggplot(ghgtraits_warming) + geom_point(aes(soilT, mean, color = genus, shape = site)) | |
| ggplot(ghgtraits_warming, aes(soilT, mean)) + geom_point(aes(shape = genus, color = trt)) + facet_wrap(~ author) | |
| ``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment