Created
October 23, 2019 16:31
-
-
Save dlebauer/cd170eb49ccada8dc0bef7dfd0a68e8a to your computer and use it in GitHub Desktop.
Candidate screening script
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyr) | |
library(dplyr) | |
x <- readr::read_csv('~/Downloads/Candidate Scores (Responses) - Form Responses 1 (2).csv') | |
x2 <- x %>% dplyr::select(evaluator = `Email Address`, | |
candidate = `Candidate's name`, | |
collaboration_communication = `Collaboration and Communication Skills`, | |
software = `Software development / production code`, | |
organization = `Organization and Planning`, | |
databases = `Databases / Programming`, | |
other = `Other Skills`, | |
overall = Overall, | |
mean = Mean) %>% | |
mutate(evaluator = as.factor(str_remove(str_remove(evaluator, '@email.arizona.edu'), '@nceas.ucsb.edu')), | |
candidate = as.factor(candidate)) #%>% | |
#filter(evaluator %in% c('dlebauer', 'julianp', 'kristinariemer', 'schnaufer')) | |
xlong <- x2 %>% pivot_longer(collaboration_communication:mean, names_to = 'category', values_to = 'score') | |
library(ggplot2) | |
theme_set(theme_bw()) | |
ggplot(data = xlong, aes(candidate, score, color = evaluator)) + | |
geom_point() + | |
geom_line(aes(group = evaluator)) + | |
facet_wrap(~category) + | |
theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
ggplot(data = xlong, aes(candidate, score) )) + | |
#geom_violin() + | |
geom_boxplot(outlier.size = 0.5, color = 'grey') + | |
geom_point(alpha = 0.25, aes(color = evaluator)) + | |
geom_line(aes(color = evaluator, group = evaluator))+ | |
facet_wrap(~category, ncol = 3) + | |
theme(axis.text.x = element_text(angle = 90, hjust = 1))+ | |
ylim(c(0,5)) | |
r <- aov(rank(mean)~candidate, data = x2) | |
TukeyHSD(r) | |
r <- aov(score~candidate+evaluator+category, data = xlong[!xlong$category == 'mean',]) | |
TukeyHSD(r) | |
#coef coerce extractAIC initialize model.tables print proj se.contrast show slotsFromS3 summary TukeyHSD vcov | |
model.tables(r, type = 'means', se = TRUE) | |
l <- lm(mean~candidate+evaluator, data = x2) | |
library(ggpubr) | |
compare_means(score~candidate, group.by = c('evaluator', 'category'), method = 'anova', data = xlong[!xlong$category == 'mean',]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment