Last active
June 12, 2022 16:13
-
-
Save dlmrr/4e6aac3ff473b3ebb2b774828a0608a6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
dep_codes = {"ZA" : "971", | |
"ZB" : "972", | |
"ZC" : "973", | |
"ZD" : "974", | |
"ZM" : "976", | |
"ZN" : "988", | |
"ZP" : "987", | |
"ZS" : "975", | |
"ZW" : "986", | |
"ZX" : "977_978", | |
"ZZ" : "fr_etranger", | |
"ZT" : "978", | |
"ZY" : "977" | |
} | |
def clean_elec(df): | |
cols = df.columns | |
keywords = ["code","libellé","nuance","abstention", "blanc", "nuls","nom","voix","commune","département","circonscription"] | |
new_cols = [] | |
for col in cols: | |
if any(x in col.lower() for x in keywords) and "%" not in col: | |
new_cols.append(col) | |
df = df[new_cols] | |
df.columns = [i.lower().replace(" du ","_").replace(" de la ","_").replace("é","e").replace(" et ","_").strip().replace(" ","_") for i in df.columns] | |
if "code_departement" in df.columns: | |
df["code_departement"] = df["code_departement"].replace(dep_codes) | |
df["code_departement"] = df["code_departement"].astype(str).str.pad(2,"left","0") | |
if "libelle_commune" in df.columns: | |
df.loc[(df["code_departement"].astype(str) == "977_978") & (df["code_commune"].astype(str) == "701"), ["code_departement","libelle_departement"]] = ["977","Saint-Barthélémy"] | |
df.loc[(df["code_departement"].astype(str) == "977_978") & (df["code_commune"].astype(str) == "801"), ["code_departement","libelle_departement"]] = ["978","Saint-Martin"] | |
df["code_commune"] = df["code_commune"].astype(str).str.pad(3,"left","0") | |
if "nom" in df.columns: | |
name_present = True | |
else: | |
name_present = False | |
if "code_b.vote" in df.columns: | |
df = df.drop(columns=["libelle_commune"],axis=1) | |
categories_candidats = list(pd.Series([i.split(".")[0] for i in df.columns if ".1" in i]).unique()) | |
keywords = ["blanc","nul","abstention"] | |
max_cand = [int(re.search('.(\d+)',i)[1]) for i in df.columns if "." in i] | |
max_cand = max(max_cand) + 1 | |
n = max_cand | |
for col in df.columns: | |
if any(x in col.lower() for x in keywords): | |
for cat in categories_candidats: | |
is_name = len([i for i in categories_candidats if "nom" in i]) > 0 | |
if "voix" in cat: | |
df["voix." + str(n)] = df[col] | |
elif ("nuance" in cat and is_name) or "prenom" in cat: | |
df[cat + "." + str(n)] = np.nan | |
else: | |
df[cat + "." + str(n)] = col | |
n +=1 | |
for cat in categories_candidats: | |
for col in df.columns: | |
if cat == col: | |
df = df.rename(columns={col : col + ".0"}) | |
max_cand = [int(re.search('.(\d+)',i)[1]) for i in df.columns if "." in i] | |
max_cand = max(max_cand) + 1 | |
temp_list = [] | |
for cand in range(max_cand): | |
cols = [i for i in df.columns if "." in i and int(re.search('.(\d+)',i)[1]) == cand] | |
df_temp = df[cols].reset_index(drop=True) | |
df_temp.columns = [i.split(".")[0] for i in df_temp.columns] | |
temp_list.append(df_temp) | |
geo_codes= [i for i in df.columns if (any(x in i.lower() for x in ["code","libelle",'departement','commune','circonscription']) and "nuance" not in i and "liste" not in i)] | |
len_cand = len(temp_list) | |
codgeo = pd.concat([df[geo_codes] for i in range(len_cand)]) | |
temp_df = pd.concat(temp_list) | |
df = pd.concat([codgeo,temp_df],axis=1) | |
if "libelle_circonscription" in df.columns: | |
df = df.drop(["libelle_circonscription"],axis=1) | |
df.columns = [i.replace(" ","_").replace("libelle_","").replace("_candidat","") for i in df.columns] | |
df = df[df["voix"].notna()] | |
df = df.drop(columns={"etendu_liste"},errors="ignore").rename(columns={ "nom_tête_de_liste" : "nom"}) | |
return df |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment