-
-
Save dmfay/c4017b8768519679e7948706fc09532e to your computer and use it in GitHub Desktop.
'use strict'; | |
/** | |
* Collapses tabular result sets into a (hierarchical) object graph based on | |
* column nomenclature. Given a query that selects parent and child columns as | |
* parent__id, parent__val, children__id, children__val, this will return an | |
* array of objects in the form | |
* | |
* {id: 1, val: 'parent val', children: [{id: 11, val: 'child val'}]} | |
* | |
* and so on. | |
* | |
* The optional options parameter may be an object with properties of the same | |
* name as any child entities (so 'children' in the example query above). Each | |
* child property defines behavior for the matching entity. | |
* | |
* If the options for 'children' contain {single: true} then children will be | |
* a single object rather than an array. | |
* | |
* If the options for 'children' contain {pk: 'my_id'} then the primary key of | |
* rows in children will be defined as my_id for purposes of filtering | |
* duplicates; otherwise, the primary key name will be assumed to be the same | |
* as the 'pk' parameter. | |
* | |
* Sample options object: | |
* {1to1child: {single: true}, custompkchild: {pk: 'my_id'}} | |
* | |
* @param {[type]} parent Name of the parent entity, the first part of parent__id. | |
* @param {[type]} pk Name of the parent primary key field, also applied to children unless overridden. | |
* @param {[type]} options Options defining special behavior (see above). | |
* @param {[type]} data Data to operate on. | |
* @return {[type]} Transformed object graph. | |
*/ | |
exports = module.exports = function (parent, pk, options, data) { | |
if (data === undefined) { | |
data = options; | |
options = {}; | |
} | |
if (!data || data.length === 0) { | |
return []; | |
} | |
/* schemata defines the structural relationships of the entity-models and the fields each model consists of, and maps | |
* the final field names to the original columns in the query resultset. | |
* example: {id: parent__id, name: parent__name, children: {id: children__id, name: children__name}} */ | |
var schemata = Object.keys(data[0]).reduce(function (acc, c) { | |
var tuple = c.split('__'); | |
var entity = acc; | |
var name; | |
do { | |
name = tuple.shift(); | |
if (name !== parent) { // avoid creating a parent schema, we want that to be the root | |
// this almost certainly does Bad things if the graph is cyclic | |
// but fortunately we don't need to worry about that since the | |
// column name format can't define a backwards relationship | |
if (!entity.hasOwnProperty(name)) { | |
entity[name] = {}; | |
} | |
entity = entity[name]; | |
} | |
} while (tuple.length > 1); // walk as deep as we need to for child__grandchild__greatgrandchild__fieldname etc | |
entity[tuple.pop()] = c; // set {fieldname: path__to__fieldname} pair | |
return acc; | |
}, {}); | |
/* mapping is a nested dictionary of id:entity but otherwise in the form of the final structure we're trying to build, | |
* effectively hashing ids to ensure we don't duplicate any entities in cases where multiple dependent tables are | |
* joined into the source query. | |
* | |
* example: {1: {id: 1, name: 'hi', children: {111: {id: 111, name: 'ih'}}} */ | |
var mapping = data.reduce(function (acc, row) { | |
return (function build (obj, schema, parents, name) { | |
var opts = options[name] || {}; | |
var pkField = name + '__' + (opts.pk || pk); | |
if (parents.length) { | |
pkField = parents.join('__') + '__' + pkField; // anything deeper than child__id needs to build the full column name | |
} | |
var id = row[pkField]; | |
if (id === null) { // null id means this entity doesn't exist and was likely outer joined in | |
return; | |
} else if (!obj.hasOwnProperty(id)) { // this entity is new | |
obj[id] = {}; | |
} | |
Object.keys(schema).forEach(function (c) { | |
if (typeof schema[c] === 'string') { // c is a field | |
obj[id][c] = row[schema[c]]; | |
} else { // c is a relation | |
if (!obj[id].hasOwnProperty(c)) { | |
obj[id][c] = {}; // current object does not have relation defined, initialize it | |
} | |
// if parent isn't the root schema include that when we recurse, otherwise ignore | |
build(obj[id][c], schema[c], (name !== parent) ? parents.concat([name]): parents, c); | |
} | |
}); | |
return obj; | |
})(acc, schemata, [], parent); | |
}, {}); | |
/* Build the final graph. The structure and data already exists in mapping, but we need to transform the {id: entity} structures | |
* into arrays of entities (or flat objects if required). | |
* | |
* example: [{id: 1, name: 'hi', children: [{id: 111, name: 'ih'}]}] */ | |
return (function transform(schema, map, accumulator) { | |
// for every id:entity pair in the current level of mapping, if the schema defines any dependent | |
// entities recurse and transform them, then push the current object into the accumulator and return | |
return Object.keys(map).reduce(function (acc, k) { | |
Object.keys(schema) | |
.filter(function (c) { return typeof schema[c] === 'object'; }) // just structure now | |
.forEach(function (c) { | |
// we have to init & pass the accumulator into the *next* recursion since the single | |
// option is defined on the child rather than the parent | |
var accumulator = options[c] && options[c].single ? {} : []; | |
map[k][c] = transform(schema[c], map[k][c], accumulator); | |
if (options[c] && options[c].sort) { | |
var sort = options[c].sort; | |
map[k][c].sort(function (a, b) { | |
if (a[sort] > b[sort]) { return 1; } | |
else if (a[sort] < b[sort]) { return -1; } | |
return 0; | |
}); | |
} | |
}); | |
if (Array.isArray(accumulator)) { acc.push(map[k]); } | |
else { acc = map[k]; } | |
return acc; | |
}, []); | |
})(schemata, mapping, []); | |
}; |
'use strict'; | |
var assert = require('chai').assert; | |
var collapse = require('../../lib/collapse'); | |
describe('lib/collapse', function () { | |
it('should return empty if given empty', function () { | |
assert.deepEqual([], collapse('parent', 'id', [])); | |
}); | |
it('should collapse simple tree structures', function () { | |
var data = [ | |
{parent__id: 1, parent__val: 'p1', children__id: 11, children__val: 'c1'}, | |
{parent__id: 1, parent__val: 'p1', children__id: 12, children__val: 'c2'} | |
]; | |
data = collapse('parent', 'id', data); | |
assert.deepEqual(data, [{id: 1, val: 'p1', children: [{id: 11, val: 'c1'}, {id: 12, val: 'c2'}]}]); | |
}); | |
it('should sort children if an option is specified', function () { | |
var source = [ | |
{parent__id: 1, parent__val: 'p1', children__id: 11, children__val: 'c2'}, | |
{parent__id: 1, parent__val: 'p1', children__id: 12, children__val: 'c1'} | |
]; | |
var data = collapse('parent', 'id', source); | |
assert.deepEqual(data, [{id: 1, val: 'p1', children: [{id: 11, val: 'c2'}, {id: 12, val: 'c1'}]}]); | |
data = collapse('parent', 'id', {children: {sort: 'val'}}, source); | |
assert.deepEqual(data, [{id: 1, val: 'p1', children: [{id: 12, val: 'c1'}, {id: 11, val: 'c2'}]}]); | |
}); | |
it('should collapse multiple children with the same parent', function () { | |
var data = [ | |
{parent__id: 1, parent__val: 'p1', children1__id: 11, children1__val: 'c1', children2__id: 21, children2__val: 'd1'}, | |
{parent__id: 1, parent__val: 'p1', children1__id: 12, children1__val: 'c2', children2__id: 22, children2__val: 'd2'}, | |
{parent__id: 1, parent__val: 'p1', children1__id: 12, children1__val: 'c2', children2__id: 23, children2__val: 'd3'} | |
]; | |
data = collapse('parent', 'id', data); | |
assert.deepEqual(data, [{ | |
id: 1, | |
val: 'p1', | |
children1: [{id: 11, val: 'c1'}, {id: 12, val: 'c2'}], | |
children2: [{id: 21, val: 'd1'}, {id: 22, val: 'd2'}, {id: 23, val: 'd3'}] | |
}]); | |
}); | |
it('should collapse children into other children', function () { | |
var data = [ | |
{parent__id: 1, parent__val: 'p1', children1__id: 11, children1__val: 'c1', children1__children2__id: 21, children1__children2__val: 'd1'}, | |
{parent__id: 1, parent__val: 'p1', children1__id: 12, children1__val: 'c2', children1__children2__id: 22, children1__children2__val: 'd2'}, | |
{parent__id: 1, parent__val: 'p1', children1__id: 12, children1__val: 'c2', children1__children2__id: 23, children1__children2__val: 'd3'} | |
]; | |
data = collapse('parent', 'id', data); | |
assert.deepEqual(data, [{ | |
id: 1, | |
val: 'p1', | |
children1: [{ | |
id: 11, | |
val: 'c1', | |
children2: [{id: 21, val: 'd1'}] | |
}, { | |
id: 12, | |
val: 'c2', | |
children2: [{id: 22, val: 'd2'}, {id: 23, val: 'd3'}] | |
}] | |
}]); | |
}); | |
it('should create empty child arrays if given null children from outer joins', function () { | |
var data = [ | |
{parent__id: 1, parent__val: 'p1', children__id: null, children__val: null}, | |
{parent__id: 2, parent__val: 'p2', children__id: 11, children__val: 'c1'} | |
]; | |
data = collapse('parent', 'id', data); | |
assert.deepEqual(data, [{id: 1, val: 'p1', children: []}, {id: 2, val: 'p2', children: [{id: 11, val: 'c1'}]}]); | |
}); | |
it('should collapse 1:1 relations with options.single', function () { | |
var data = [ | |
{parent__id: 1, parent__val: 'p1', child__id: 11, child__val: 'c1'}, | |
]; | |
data = collapse('parent', 'id', {child: {single: true}}, data); | |
assert.deepEqual(data, [{id: 1, val: 'p1', child: {id: 11, val: 'c1'}}]); | |
}); | |
it('should collapse tree structures on a different child pk with options.pk', function () { | |
// this dataset is 'bad' in that you're not usually going to see 100% duplicate rows unless you've really screwed up | |
// but it's more legible than reproducing the 'multiple children' data and tests the deduplication just the same | |
var data = [ | |
{parent__id: 1, parent__val: 'p1', children__child_id: 11, children__val: 'c1'}, | |
{parent__id: 1, parent__val: 'p1', children__child_id: 12, children__val: 'c2'}, | |
{parent__id: 1, parent__val: 'p1', children__child_id: 12, children__val: 'c2'} | |
]; | |
data = collapse('parent', 'id', {children: {pk: 'child_id'}}, data); | |
assert.deepEqual(data, [{id: 1, val: 'p1', children: [{child_id: 11, val: 'c1'}, {child_id: 12, val: 'c2'}]}]); | |
}); | |
it('should apply new parents only in the correct scope', function() { | |
var data = [ | |
{ | |
'this__id': 1, | |
'account__id': 1, | |
'this__name': 'Eduardo Luiz', | |
'contact__email': 'email', | |
'contact__phone': 'phone', | |
'this__notes': null, | |
'this__archived': false, | |
'address__zipCode': 'zip', | |
'address__street': 'street', | |
'address__number': 'number', | |
'address__complement': null, | |
'address__neighborhood': null, | |
'address__city': 'Sao Paulo', | |
'address__state': 'Sao Paulo', | |
'address__coords__latitude': '1', | |
'address__coords__longitude': '2', | |
'labels__id': '297726d0-301d-4de6-b9a4-e439b81f44ba', | |
'labels__name': 'Contrato', | |
'labels__color': 'yellow', | |
'labels__type': 1 | |
}, { | |
'this__id': 1, | |
'account__id': 1, | |
'this__name': 'Eduardo Luiz', | |
'contact__email': 'email', | |
'contact__phone': 'phone', | |
'this__notes': null, | |
'this__archived': false, | |
'address__zipCode': 'zip', | |
'address__street': 'street', | |
'address__number': 'number', | |
'address__complement': null, | |
'address__neighborhood': null, | |
'address__city': 'Sao Paulo', | |
'address__state': 'Sao Paulo', | |
'address__coords__latitude': '1', | |
'address__coords__longitude': '2', | |
'labels__id': '1db6e07f-91e2-42fb-b65c-9a364b6bad4c', | |
'labels__name': 'Particular', | |
'labels__color': 'purple', | |
'labels__type': 1 | |
} | |
]; | |
var options = { | |
account: { | |
single: true | |
}, | |
address: { | |
single: true | |
}, | |
contact: { | |
single: true | |
}, | |
coords: { | |
single: true | |
} | |
}; | |
var models = collapse('this', 'id', options, data); | |
assert.deepEqual(models, [{ | |
'id': 1, | |
'account': { | |
'id': 1 | |
}, | |
'name': 'Eduardo Luiz', | |
'contact': { | |
'email': 'email', | |
'phone': 'phone' | |
}, | |
'notes': null, | |
'archived': false, | |
'address': { | |
'zipCode': 'zip', | |
'street': 'street', | |
'number': 'number', | |
'complement': null, | |
'neighborhood': null, | |
'city': 'Sao Paulo', | |
'state': 'Sao Paulo', | |
'coords': { | |
'latitude': '1', | |
'longitude': '2' | |
} | |
}, | |
'labels': [ | |
{ | |
'id': '297726d0-301d-4de6-b9a4-e439b81f44ba', | |
'name': 'Contrato', | |
'color': 'yellow', | |
'type': 1 | |
}, { | |
'id': '1db6e07f-91e2-42fb-b65c-9a364b6bad4c', | |
'name': 'Particular', | |
'color': 'purple', | |
'type': 1 | |
} | |
] | |
}]); | |
}); | |
}); |
Evidently I don't get email notifications on gist comments! Did you figure it out? If not I can take a closer look later on.
@lfreneda I found the problem: build()
wasn't scoping parents properly, so once address
was added it never fell back off. I've updated the gist and added your testcase. Doublecheck it -- your version was comparing the result array to an object model, which wouldn't work out.
As for publishing this, I'm hoping to bring it into Massive at some point....
@dmfay you are GOD! :) Thank you so much for your help 👍
I would like to share with you some modifications that I've made. I just forked it and added some conventions.
If you have any free time, please check this out: https://gist.github.com/lfreneda/09d10429ad4f7d421955c1bffed097ca
Your feedback will be really appreciated.
The idea was to collapse without providing an options object;
If your recordset column is named ending with []
it will be treated as array otherwise as an object.
For example:
given the following rows:
var rows = [
{'this.id': 1, 'this.val': 'p1', 'this.children[].id': 11, 'this.children[].val': 'c1'},
{'this.id': 1, 'this.val': 'p1', 'this.children[].id': 12, 'this.children[].val': 'c2'}
];
will be collapsed to:
[{id: 1, val: 'p1', children: [{id: 11, val: 'c1'}, {id: 12, val: 'c2'}]}];
Let me know your thoughts on that.
That's a neat idea! I've actually integrated a version of this into Massive 4.0.0 just last night 😄 You do have to provide a decomposition schema, but you can use it with any resultset without having to name your output columns.
@dmfay That's great!
I'm currently using massive 2.*, but I'm planning to upgrade to version 4 and I will definitely use it.
@dmfay need your help D:
The following code is not working propertly:
What I found was that when mapping (
build function
) labels are being considered children of address :(Might be a problem here:
Can you help me out? any tips?