Created
December 11, 2017 15:42
-
-
Save dmmiller612/75e0f515083d3c61f0024a0e22662804 to your computer and use it in GitHub Desktop.
Tensorflow Serialize and Deserialize GraphDef and set weights.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
from google.protobuf import json_format | |
np.random.seed(12345) | |
def tensorflow_get_weights(): | |
""" | |
@author https://github.com/maxim5 | |
""" | |
vs = tf.trainable_variables() | |
values = tf.get_default_session().run(vs) | |
return zip(vs, values) | |
def tensorflow_set_weights(weights): | |
""" | |
@author https://github.com/maxim5 | |
""" | |
assign_ops = [] | |
feed_dict = {} | |
for var, value in weights: | |
value = np.asarray(value) | |
assign_placeholder = tf.placeholder(var.dtype, shape=value.shape) | |
assign_op = var.assign(assign_placeholder) | |
assign_ops.append(assign_op) | |
feed_dict[assign_placeholder] = value | |
tf.get_default_session().run(assign_ops, feed_dict=feed_dict) | |
def create_simple_graph(): | |
""" | |
Creates a very simple xor graph | |
""" | |
x = tf.placeholder(tf.float32, shape=[None, 2], name='x') | |
layer1 = tf.layers.dense(x, 12, activation=tf.nn.relu) | |
layer2 = tf.layers.dense(layer1, 7, activation=tf.nn.relu) | |
out = tf.layers.dense(layer2, 1, name='outer', activation=tf.nn.sigmoid) | |
opt = tf.train.AdamOptimizer(learning_rate=.01) | |
y = tf.placeholder(tf.float32, shape=[None, 1], name='y') | |
loss = tf.reduce_mean(tf.square(y - out)) | |
mini = opt.minimize(loss, global_step=tf.train.get_or_create_global_step(), name='mini') | |
return mini | |
def retrieve_xor(): | |
""" | |
Grabs xor data | |
""" | |
xor = [(0.0, np.array([0.0, 0.0])), | |
(0.0, np.array([1.0, 1.0])), | |
(1.0, np.array([1.0, 0.0])), | |
(1.0, np.array([0.0, 1.0]))] | |
a = np.asarray([x for y, x in xor]) | |
b = np.asarray([y for y, _ in xor]).reshape((4, 1)) | |
return a, b | |
def run_initial(opti, feed_dict): | |
""" | |
Run the session for the first time | |
""" | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
for i in range(0, 10): | |
sess.run(opti, feed_dict=feed_dict) | |
first_weights = tensorflow_get_weights() | |
g = tf.get_default_graph().as_graph_def() | |
json_string = json_format.MessageToJson(g) | |
return json_string, first_weights | |
def run_serialized(json_graph, weights, feed_dict): | |
""" | |
deserialize graph and run it again | |
""" | |
gd = tf.GraphDef() | |
gd = json_format.Parse(json_graph, gd) | |
with tf.Session() as sess: | |
tf.import_graph_def(gd) | |
sess.run(tf.global_variables_initializer()) | |
nu_out = tf.get_default_graph().get_tensor_by_name('outer/Sigmoid:0') | |
mini = tf.get_default_graph().get_tensor_by_name('mini:0') | |
tensorflow_set_weights(weights) | |
for i in range(0, 100): | |
sess.run(mini, feed_dict=feed_dict) | |
predicted = sess.run(nu_out, feed_dict=feed_dict) | |
return predicted | |
def run_with_no_serialized_weights(): | |
""" | |
weights are not turned into json | |
""" | |
initial_graph = create_simple_graph() | |
a,b = retrieve_xor() | |
feed_dict = {'x:0': a, 'y:0': b} | |
json_graph, weights = run_initial(initial_graph, feed_dict) | |
predictions = run_serialized(json_graph, weights, feed_dict) | |
return predictions | |
if __name__ == "__main__": | |
print(run_with_no_serialized_weights()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment